

The Pennsylvania State University Ice Arena

Executive Summary

The Penn State Ice Arena is the focus of the Integrated Project Delivery/ Building Information Modeling (IPD/BIM) Senior Thesis. This report will serve as a proposal for HPR Integrated Design's alternative design strategies to achieve more efficient building systems within each discipline. The goals of these strategies are to deliver a facility that will have the highest quality for the budget allotted, reduce building's energy usage and cost, create a fast tracked schedule, and develop a LEED Gold certified hockey arena.

HPR Integrated Design has developed three packages that first saved costs, and then enhanced the building features. These packages will give the owner options to enhance the quality of their ice hockey arena. HPR has studied the feasibility study up through the preliminary design, as well case other case studies, while using value engineering to develop these packages. Listed here are the design packages created.

- Savings Package Raising of the Event Level
- Prominence Package Main Arena Roof System Design
- Function Package Façade Redesign

HPR has utilized the following method for developing each of the design packages.

- 1. Find an Opportunity
- 2. Identify our Goals
- 3. Create a Strategy
- 4. Define our Process
- 5. Finalize the Results

Savings Package:

The current design shows a floor-to-floor height between the event level and main concourse level of 20 foot 9 inches. With this height level, there is 10-foot plenum space. The driving force behind raising the event level is to reduce the amount of bedrock needing to be excavated from the site. In doing so, the plenum space will be reduced. HPR believes that by raising the event level approximately three feet, excavation costs will be reduced, and the plenum space that is otherwise wasted will be optimized. Savings from the reduction of excavation will then be reallocated to the main arena roof system design to give the Penn State University a facility of greater value for the same construction cost.

Prominence Package:

When HPR received the drawings for the Penn State Ice Arena, the main arena roof system's design had not been completed. HPR's designers will coordinate and design a roof for the main arena that is iconic and that will support the overhead lighting and duct systems.

Function Package:

With the design of the new roof system, the façade will have to be redesigned in order to coordinate in the efforts to design an iconic facility. As the façade is redesigned, materials will be

HPR Integrated Design

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

selected and configured to maximize daylighting, reduce energy loads, and reduce construction and energy costs.

The raising of the event level and the main arena roof systems are closely connected. As the volume of the main arena is increased by a new roof profile, it is then reduced with the raising of the event level up. On a financial side, money saved in excavation by raising the event level can then be reallocated to the more prominent arena roof structural and MEP systems. This will provide the University with a higher quality product for a competitive cost to the current design.

Table of Contents

Executive Summary	i
Table of Contents	iii
Penn State Ice Arena Overview	1
Existing Architecture	4
Existing Façade & Building Enclosure	6
Existing Structural System	6
Existing Mechanical System	9
Existing Lighting Systems	12
Existing Electrical Systems	12
Construction Management	12
Building Information Modeling Process Actual Project	13
Contract Language	13
BIM Execution Plan Actual Project	14
BIM Goals and BIM Uses	14
BIM Infrastructure Design & Construction	15
BIM Information Exchanges and Model Ownership	15
Level of Development (LOD) Matrix	15
Building Information Modeling Process - Thesis	16
BIM Goals and Uses	16
Communication Processes	18
Communication Flow	18
Collaboration Procedures	19
Savings Package	20
Opportunity Statement	21
Excavation Budget and Schedule	21
Building Footprint Cost Break Down	22
Goal	23
Design Approach	23
Business Model	25

HPR Integrated Design

Sight Lines	27
Architectural Considerations & Applicable Codes	29
Accessibility Issues	29
Determining the Optimal Distance	31
Sight lines and ADA Seating	31
Finalized Sight Lines	32
Plenum Check	35
Relocation of Seats	35
Business Model Implications	37
Americans with Disabilities Act (ADA) Seating	38
Alternative Seating Layout	40
Collaborative Plenum Design	42
Level of Development	43
Mechanical Design	44
Calculating Loads	44
Sizing Duct	45
IAQ and CFD study of Men's Locker Room	45
Structural Design	55
Two-Way Flat Plate Investigation	55
Reinforced Concrete Gravity System	56
ADA Alcove Structural Considerations	57
Foundation Capacity Checks	58
Lighting Design	58
Typical office	59
Locker Room	60
Clash Detection	62
Cost and Schedule Implications	63
Package Summary	65
ENHANCEMENT PACKAGE: Prominence	66
Opportunity Statement	67
Shape and Dimensions	69
Early Design Strategy	70

HPR Integrated Design

Case studies	71
Regulations	74
Integration of Mechanical Electrical and Structural Systems	74
Structural System	74
Mechanical System	92
Lighting System	94
Design Impacts	100
Delivery & Constructability	101
Delivery	101
Current Project Design Sequencing & Constructability	102
HPR's Erection Sequence	103
Site Logistics	107
Crane Analysis	109
Cost & Schedule Impact	110
Package Summary	111
ENHANCEMENT PACKAGE: Function	112
Opportunity Statement	113
Design Goals	113
Architectural	113
Energy	118
Effect of Glass	118
Effect of Wall Construction Type and Curtain Wall System	121
LEED Energy and Atmosphere	125
Lighting	127
Structural	130
East Façade Design Input	130
New Entrance Structural Design	134
Cost & Schedule Impact	136
Package Summary	138
HPR Redesign Cost & Schedule Summary	139
Summary of Packages	139
General Conditions	139

HPR Integrated Design

Final Savings	140
APPENDIX A: Index of Figures and Tables	141
Figures	141
Tables	146
APPENDIX B: Measures for Success	150
Event Level Relocation	150
Main Arena Roof System Design	150
Façade Redesign	150
APPENDIX C: BIM Execution Planning	152
BIM Goals	152
BIM Uses Worksheet	153
APPENDIX D: MAE Thesis Requirements	154
Construction MAE	154
Mechanical MAE	154
Structural MAE	155
APPENDIX E: Engineering Calculations	156
Structural Hand Calculations	156
Savings Package Hand Calculations	156
Prominence Package Hand Calculations	169
Function Package Hand Calculations	170
Mechanical Calculations	176
Trane Trace Load Calculations Based of the DD Drawings	176
APPENDIX F: Event Level Raising	190
Bedrock & Soil Excavation	190
Seating Capacity & Price Points	193
Sightline Sections	196
Two-Way Post-Tensioned Flat Plate Calculations	197
CFD Results	205
Code	205
Velocity	205
Concentration:	207
Calculated Ventilation	208

HPR Integrated Design

Velocity	208
Concentration	209
Ventilation Rate and Load comparison for the Men's Locker Room	211
Event Level Raising Cost Impact	212
Event Level Raising Schedule Impact	217
APPENDIX G: Main Arena Roof System	219
Structural Loads	219
Snow Loads Flat Roof Snow Load and Drifting	219
Wind Calculations	220
Seismic Design Loads & Results	223
Long Span Truss Design	227
Combined Loading Calculations	230
Mechanical Load	232
Structural Detailed Cost Estimates High Roof System Members Only	235
Crane Analysis	241
Crane Cut Sheets	242
Main Arena Roof System Cost Impact	249
APPENDIX H: Façade Redesign	252
Current Design's LEED Score Card	252
LEED Energy and Atmosphere Credit 1	254
H.A.M. Toolbox Analyses	255
Façade Redesign Cost Impact	259
Façade Redesign Schedule Impact	259
APPENDIX I: Redesign Schedule	261
APPENDIX J: Ice Generation System Research	265
APPENDIX K: Normal Building Electrical System	277
APPENDIX L: General Lighting Information	295
[APPENDIX M: Catalog Information]	299
Kawneer Wall System	299

Penn State Ice Arena Overview

The Penn State Ice Hockey Arena project started in September of 2010 with an \$88 million private donation to the school to establish a Division 1-A NCAA Men's and Women's collegiate hockey program at the Pennsylvania State University. Later, an additional donation of \$1 million was made if the effort to creating the new arena. The project picked up momentum almost immediately with the pressure of the large donation and with the expectation of construction starting in Spring of 2012 followed by the planned opening of the facility for the 2013-2014 men's and women's ice hockey season.

Since hockey's reemergence on campus in 1971, the Penn State Nittany Lion Icers have annually competed and succeeded at the highest levels of play winning multiple championships. The Penn State University is in the process of transforming its highly successful Men's Hockey club team into a Division 1- NCAA hockey program. A key component to this process is the evaluation of the program's existing facilities and the assessment of new facilities and resources that may be required. Based on this understanding, the university started the process with completing feasibility studies to determine these required additional facilities and resources. Feasibility studies had already been conducted in 1999 for the possibility of a future arena and were again conducted by multiple design firms in 2011. Refining these studies from a decade earlier, the architectural firm of Crawford Architects, was selected to design the new arena.

The Penn State Ice Hockey Arena is a state-of-the-art 220,000 square foot area facility containing 2 sheets of ice, a competition ice sheet and smaller community area ice sheet. The new facility has a seating capacity of over 6,300 seats with the main arena containing 6,000 seats split between a lower bowl and mezzanine level. The arena includes 12 luxury suites with the possibility of future expansion to 24 suites.

The new ice hockey facility site was selected to be located on the corner of University Drive and Curtain Road on Penn State University northeast extents of campus. The new Penn State Ice Arena will bolster the already prominent Pennsylvania State University athletic facilities sector of campus, which is located in close proximity to the new arena. The Bryce Jordan Center, the university's main event arena including the home of the men and women's basketball programs sits directly across University Drive. The arena is located beside the university's football practice facility, Holuba Hall and only a short walk to the University's main athletic facility, Beaver Stadium, home of the nationally recognized NCAA Division 1 football program.

The selected site boasts majestic views of both nature and architectural excellence with views of the area's famous Mount Nittany peak to its southwest. The new Penn State Ice Arena replaced existing parking lots and the university's lacrosse club men's and women's turf field that will be replaced prior to construction of the new arena.

The Penn State Ice Hockey Arena Pennsylvania State University

University Park, PA

Home of the Penn State Nittany Lions NCAA Division 1A Men's and Women's Ice Hockey Programs

<u>Actual Project Team:</u>

Architect:Crawford Architects, LLCKansas City, MOStructural:Thornton TomasettiKansas City, MO

M/E/P Engineer: Moore Engineers, P.C. Camel, IN

Civil Engineer:Sweetland EngineeringState College, PALandscape Architect:Lager Raabe Skafte Landscape Arch.Philadelphia, PAGeneral Contractor:Mortenson ConstructionMinneapolis, MN

Building Statistics:

Owner: The Pennsylvania State University

Location: University Park, PA Size: 220,000 Sq. Ft.

Type: Multi-purpose Arena

Cost: \$73,000,000

Project Delivery: Design-Bid-Build with CM at Risk

Project Duration: February 10, 2012 September 5, 2013

There is a footprint constraint for this site; a main campus utility artery runs parallel with the west side of the site depicted in Figure 1 as a yellow line.

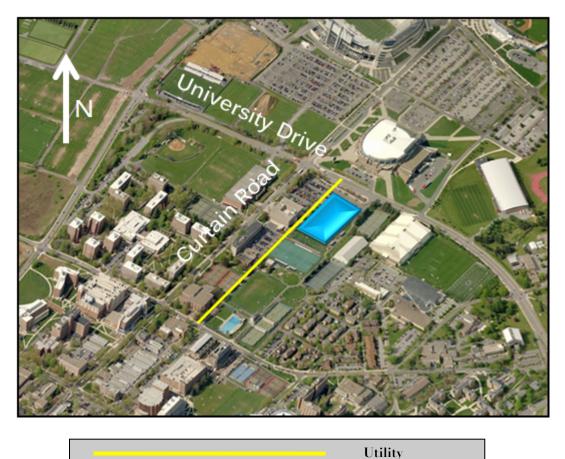


Figure 1: Site & Surroundings

Each floor is occupiable, with the event level hosting the ice sheets, office spaces, locker rooms, and training rooms. The main concourse level, where the main and student entrances are located, has restaurant services, concession stands, and the Mt. Nittany room. There are 14 suites and 2 loge boxes for the Penn State President and donors. The main competition arena will be able to hold 6,000 spectators, while the auxiliary arena will hold 300 spectators.

Existing Architecture

The existing architectural style of the Penn State Ice uses many of the common building materials found on campus. It is mostly brick with a large glass eastern façade. The current design calls for a slightly pitched metal deck roof. Many features of the building are geared towards enhancing the audience's experiences, the large vomitories, panoramic vistas, and optimize viewing angles among many others.

Both sheets of ice are on the event level (shown in Figure 2) along with building administration offices, visitor locker rooms, team locker rooms and team support areas. The main arena ice sheet plays host to the men and women varsity hockey program. The second sheet, the community rink, has been branded the "workhorse" of the facility and will service local patrons and leagues. The entrance for the community rink side of the facility is located on the southeastern side of the building. The electrical, mechanical, and ice plant rooms are all located on the western corner of the event level.

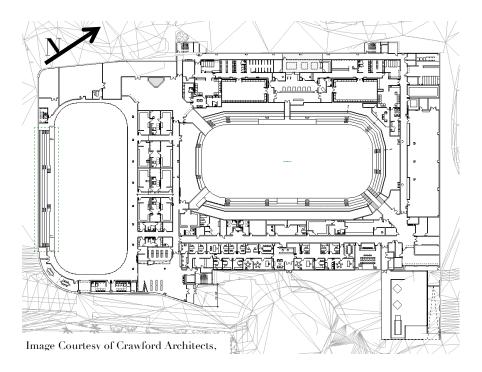


Figure 2: Event Level Floor Plan

The main concourse level, shown in Figure 3, will be the level in which the majority of patrons will occupy during a game. It holds all of the main vomitories to enter the arena bowl as well as restrooms and concessions. The main building entrance is located on the northern corner of the building; patrons of the building are greeted by a 2 story atrium which opens up to three options for traveling around the building, the main concourse which wraps the main bowl, a grand stair case to the club level and a large vomitory into the arena bowl. The main student entrance is located on the west façade.

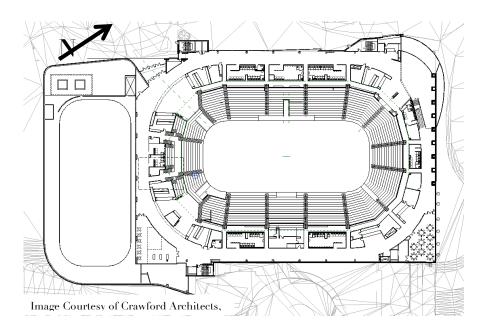


Figure 3: Main Concourse Level Floor Plan

Moving to the top level of the facility is the club level (Figure 4); within this level are the club suites, club lounge, a dining space and a kitchen to support the suites and the dining space.

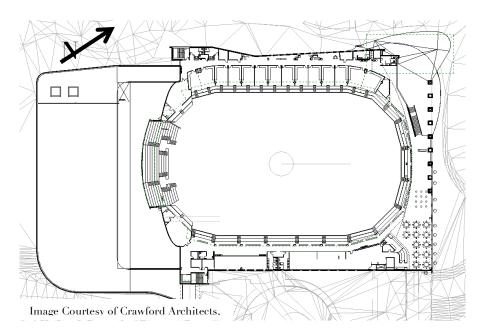


Figure 4: Club Level Floor Plan

Existing Façade & Building Enclosure

The existing exterior façade architectural style of the ice arena is one that has graced the Penn State campus for many years. Large facades made of mostly brick with penetrations coming from the windows. One exception to this standard is northeast façade. In the preliminary designs this façade is a large glass curtain wall spanning the entire width of the building and wrapping the corners.

Existing Structural System

The foundation system for the Penn State Ice Arena consists of a combination of micropiles with pile caps, grade beams, isolated footings and strip footings. Micropiles with pile caps are used west of the main competition arena where the elevation of top of bedrock may vary. Isolated footings are used on all interior columns around the main competition bowl and strip footings are utilized around the exterior walls of the arena. Figure 5 shows the current foundation system with the area around the main competition bowl that is anticipated to be micro piles with pile caps.

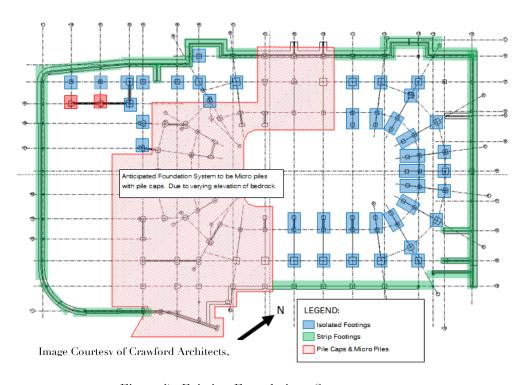


Figure 5: Existing Foundations Systems

The event level flooring systems are slabs on grade, all at the same elevation. In the plan northwest corner of the arena, between the event level and the main concourse level, is a depressed floor slab that is utilized for hiding mechanical equipment. This depressed slab consists of a 7 ½" NWC composite slab with W18 beams and W24 girders framing members.

All concrete used on the Penn State Ice Arena project is 4,000 psi with the exception of formed slabs, which utilizes 5,000-psi normal weight concrete. Steel reinforcement both in the foundation system and throughout all other concrete walls is 60 ksi.

The event level is on the same elevation and covers the entire footprint of the arena. There is a 20'-9" floor-to-floor height from the event level to the main concourse level. A 12" concrete foundation wall frames the full 20'-9" dimension between the event level and main concourse level from the northeast corner to the west corner of the facility. The east side of the building footprint has no foundation wall and between the west corner and the south corner of the building, the foundation wall tapers down with the grade change.

Around the main competition sheet of ice, the main concourse level and club level consist of the typical one way, 7 ½" NWC composite slab on 3 inch, 18 gauge VLI composite deck with W18 beams and W24 girders framing. The beams and girders frame into W18 exterior columns and W24 interior columns at the intersection of grid lines. Typical bays on these levels range from 37'-2" x 28'-0" (largest bay) to 28'-8" x 28'-0" (smallest bay).

Special structural framing that is unique to the ice arena consists of the main competition bowl being made up of a precast "tub" which contains precast seating treads and risers supported on W30 sloped beams and intermediate HSS steel members. Additionally, both the competition and practice sheets of ice are installed over top a 6" slab on grade that is insulated to avoid slab upheaval due to freeze/thaw cycles throughout the year.

Long span, simply supported steel trusses span 196'-0" from column line Y3 to Y9 running north-south with bracing trusses spanning 240'-5" from column line X6 to X13 running east-west. The top and bottom chords for all trusses are W14's with double angles utilized as the diagonals.

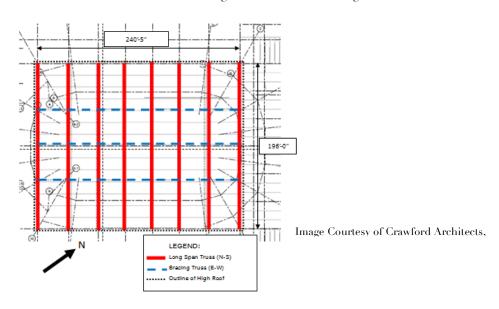


Figure 6: High Roof Framing Plan

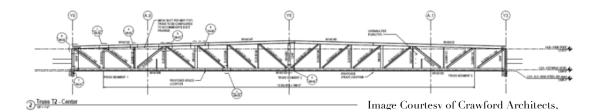


Figure 7: Simply Supported Existing Long Span Truss

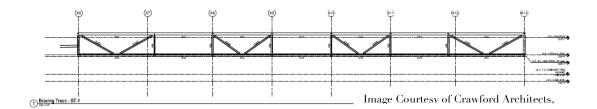


Figure 8: Bracing Long Span Truss

Figure 6 shows a simplified high roof-framing plan. The high roof sits approximately 5'-11" above the flat lower roof. The simply supported truss, shown in Figure 7, is sloped slightly to a high point in the middle. These trusses are 10'-0" deep at the exterior supports and 13'-9" at mid-span. The bracing trusses, shown in Figure 8, are not sloped and are a constant 10'-0" deep. Bottom of the high steel is 50'-0" clear from the top of the ice, ideal for an ice hockey arena. Intermediate framing between these trusses support 3 inch, 18-gauge roof deck.

The lower flat roofs on either side of the long span high roof span the 28' wide north and south concourses around the competition arena with 24K8 bar joists. This low roof system slopes up on the north side of the building to meet the high rooftop of steel to create a grand entry at the northern main entrance of the facility. Additionally, the community rink roofing system consists of sloped deep long span trusses that span the 110' wide space.

The lateral system for the arena consists of a combination of moment frames, braced frames and shear walls. Shear walls are designed starting from the event level and terminating at the main concourse level. The main concourse level has a small two bay-braced frame running along column line D between column lines 12—13. This is the sole braced frame designed in the facility and extends up another level to the event level.

The majority of the lateral systems are designed as moment frames at the club level. Moment frames run the east-west direction above both the north and south concourse along column lines Y2.3 and Y10 ranging from column lines X7 to X12. Additional moment frames run north- south at these locations on all grids lines from X8 to X13. The lateral system for the Penn State Ice Arena is shown in Figure 9.



Figure 9: Existing Layout for the Arena Lateral Systems

Existing Mechanical System

The current design for the Penn State Ice Arena uses the campus chilled water plant to provide chilled water for space cooling and the campus steam plant to meet loads. The low-pressure steam from the pressure reducing valve (PRV) station puts the steam through a heat exchanger and the building ultimately uses hot water.

The building is served by 12 air-handling units (AHU 1-12), and 2 dehumidifying units (AHU 13, 14). The twelve air-handling units can be divided in to three separate categories:

- 1. Energy recovery and dehumidification
- 2. Energy recovery
- 3. Economizer

Group 1 (AHU 10-12) serves the main competition bowl and the community ice rink where it is important to control humidity. These areas are also served by the two dehumidification units. Group 2 (AHU 5, 7, 8, 9) serves both of the varsity looker rooms and the community looker rooms as well as the offices. The energy recovery is done with a heat pipe. Group 3 (AHU 1-4, 6) serves the concourses, kitchen, restaurant, and weight room. The economizer is important in these areas because the occupancy is transient; if the amount of outdoor air can be controlled based on both outside temperature and occupancy there can be drastic energy savings. The remaining spaces are served by separate fan coil units.

The air-handling units are located on the roof above the concourse level. Supply ducts from the two units serving the main arena bowl are able to penetrate into the main arena while that of the other units must go down through mechanical shafts. AHU 7, 8, 13, 14 are located on the concourse level, not the roof.

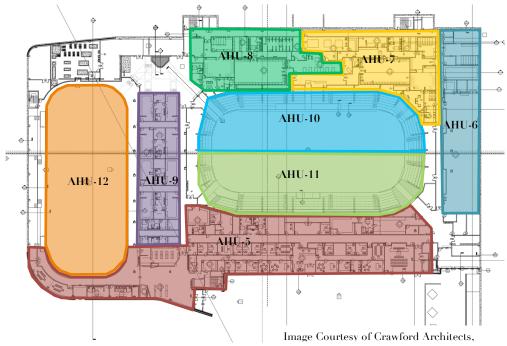


Figure 10: Existing AHU Zoning for the Event Level

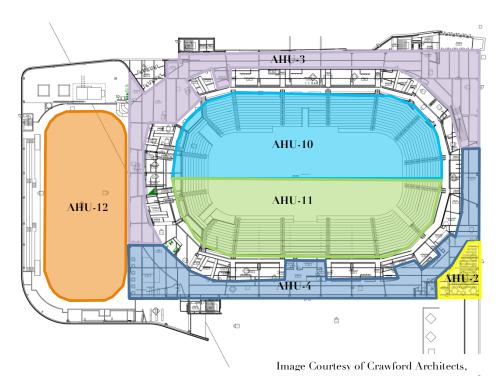


Figure 11: Existing AHU Zoning for the Concourse Level

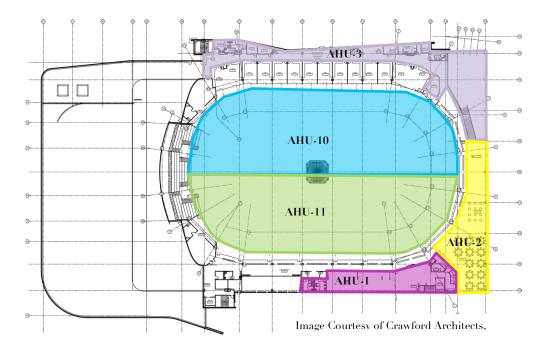


Figure 12: Existing AHU Zoning for the Club Level

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

Existing Lighting Systems

The lighting systems for the Penn State Ice Arena are all served on a 277V distribution system. The main arena has 1000 watt metal halide indoor sports lighting fixtures with black out shutters. An array of linear fluorescent hi-bay luminaries is placed to light the community rink. Other areas, including the concourse, lockers, concessions, restrooms, and lounges of the building do not have lighting specified in the set of drawings provided at the beginning of the year. Site lighting is provided on both the northwest and the southeast side of the buildings by a pole mounted Louis Poulson fixture that is standard for Penn State. This fixture has a 100 watt metal halide lamp and is mounted at 12' above finished grade. Lighting in the parking lot is provided by Lumark Tribute Series, which contains a 250 watt high pressure sodium lamp mounted at 25', this also is the Penn State standard.

Lighting controls for the building are not specified in the set of drawings provided at the beginning of the year.

Existing Electrical Systems

The normal building electrical service is provided by the Penn State campus loop and is rated at 12,470 Volts. Two pad mounted transformers reduce the voltage to the building operational voltage of 480Y/277 Volts. Each of the transformers is rated at 2,500 KVA and serves one side of the building's double-ended substation (main-tie-main). The substation consists of two main switchboards rated at 3000 Amps each. One of the main switchboards has service disconnects that feed the critical and equipment automatic transfer switches. Beyond the main switchboard lie distribution panels for both equipment and lighting rated at 480Y/277 Volts. An emergency automatic transfer switch is served from the equipment distribution panel. Step down transformers are also used throughout the building to service the receptacle load.

Emergency building electrical services are provided by the Penn State emergency campus loop and are rated at 4,180 Volts. A separate transformer is used to step down the primary voltage to 480Y/277 Volt. This transformer serves the emergency automatic transfer switch, rated at 200 Amps. The emergency distribution system has the same basic hierarchy as the normal system, with a distribution panel serving the load and step down transformers.

Construction Management

In September 2010, a private donor provided Penn State with a gift and the opportunity to build a Penn State Ice Hockey Arena for its Division 1 men's and women's hockey teams. This donation was made in the amount of \$88 million, with an additional private donor donating \$1 million. Of the \$89 million donation, \$73 million has been budgeted for the development and construction of this project. Mortenson Construction has been selected as the project management firm. The teams will officially become a Division 1 program in the 2012 to 2013 hockey season, but the facility will not be completed until the 2013 to 2014 season. Preconstruction will begin in January 2012, with construction slated to begin in March 2012. Construction is expected to be completed by September 2013. The project is being delivered as a Design-Build project with a LEED Gold Certification.

Building Information Modeling Process Actual Project

The Penn State Ice Hockey Arena project is utilizing the use of a building information model and the process of Building Information Modeling (BIM) throughout design, construction and the operations phases of this facility. Penn State University is a progressive institution in research and development of processes for the building industry. The institution requires that all projects exceeding a total project cost of \$5 million in new construction, substantial renovation or as directed by the Office of the Physical Plant (OPP), the university owner's representatives, MUST be designed and constructed using the BIM process.

The following section of this report will briefly describe the BIM process, the contract language that has been adopted for the project and an overview of the Building Information Modeling Execution Plan that has been established on the project.

Contract Language

The Penn State Ice Hockey Arena project utilizes the standard "Form of Agreement 1-P" Owner and Design Professional contract language, which is a custom contract that has been developed by the Office of the Physical Plant for any new construction or renovations within any of the Pennsylvania State University campuses. HPR Integrated Design has obtained the standard OPP contract language but due to sensitivity with this information, it has not been included as part of this report's appendix per agreement with the University for its release.

This project exceeds the \$5 million dollar milestone for new construction and therefore meets the criteria necessary for BIM implementation on the project. In addition to the standard contract language, Form of Agreement 1-P, OPP has developed in-house Building Information Modeling (BIM) Contract Addendum v1.1 to cover the additional requirements that are associated with a BIM project. The Building Information Modeling (BIM) Addendum v1.1 includes contract language about the following:

- The Project Team shall develop a BIM Project Execution Plan (BIM Ex Plan)
- BIM Uses to include Design Authoring and an as-built BIM Model for integration with Penn State's facility maintenance program.
- Quality Control
- BIM Model Submission Requirements
- BIM Model Responsibilities
- Ownership, Rights, and Liabilities in data
- BIM Schedule of Values Additional Costs for BIM implementation

This information must be developed by all design entities associated with the Penn State Ice Hockey Arena project prior to programming and design. Once awarded the project, the design and construction entities developed a BIM implementation strategy and implementation plan that will be explained in further detail in the following section.

BIM Execution Plan Actual Project

The Penn State Ice Hockey Arena project team developed a BIM Execution Plan that was derived from Penn State University's OPP BIM Project Execution Plan Template v2.0. The development of this document was led by Crawford Architects and includes the following:

- Identified each entities key contacts throughout the process
- Developed BIM goals and BIM uses
- Established the BIM infrastructure (software platforms for design)
- Determined BIM model ownership and liabilities during design and construction
- Developed BIM Information Exchanges and process maps
- Determined Level of Detail (LOD) matrix for the BIM model

The BIM Ex plan was a very important step early in the BIM process to develop key processes that allow for the reduction of liability and increase in efficiency throughout the project. The following sections of this report will briefly touch on the different established processes for comparison to HPR Integrated Design's developed BIM Ex plan and processes.

BIM Goals and BIM Uses

The Office of the Physical Plant requires per contract language in the BIM Addendum v1.1 that BIM uses must include design authoring and operations and facility maintenance data input (6D). The project team developed BIM goals that include increasing field productivity by 10%, conduction conflict resolution during design, creating accurate design documents, etc. Figure 13, shows a portion of the BIM goals chart extracted from the actual project's BIM Execution Guide.

Priority Ranking (1 to 3)	Goal Description	Potential BIM Use
1	Design Team is preparing Design Intent Model which will be transferred to MAM to prepare Means and Methods Model during construction and shop drawings.	Work tasks, processes & ultimate use of model to be verified with Penn State & mutually agreed to by MAM&CA
1	Prepare accurate design documents to establish basis of design within traditional standard of care provisions that govern the design of ice arena projects.	Model will be transferred to MAM for control during shop drawings & construction with "right of reliance."
1	Derive accurate Construction Documents	Model will be transferred to MAM for control during shop drawings & construction with "right of reliance."
1	Enhance coordination between Owner/ Client, design team and construction team by utilizing live model during design presentations	Support decision making, review & approvals
1	Increase stakeholder participation in the design process through regular interaction with model (s)	Support decision making, review & approvals, consensus & communication to/ from stakeholders

Figure 13: Established BIM Goals - Actual Project

BIM Uses were then determined using the BIM goals that include 3D clash detection, energy analysis, design authoring, facility operation data integration (6D), building envelope analysis and other uses that were in addition to contractual requirements.

BIM Infrastructure Design & Construction

The actual project team will utilize Revit v.2012 (A/MEP/S) for design authoring, AutoCAD 2012 (2D and 3D), SketchUp v8.0, 3DS Max v. 2012 and other analytical programs for use during the design portion of the ice arena. During construction the project team will utilize BIM technologies such as Primavera P6 (scheduling), Navisworks v.2012, MasterSpec (documentation control) and Synchro for 4D scheduling analysis.

BIM Information Exchanges and Model Ownership

The actual project team will utilize a federated modeling platform, which includes an architectural design basis model only. This model was developed by the architect and MEP designers that is being utilized by the construction manager to develop means and methods only. The BIM model was developed and resided with the architect until design was completed in February 2012.

At this time, a federated model approach was adopted which consists of an architectural model and an additional construction model that run parallel throughout the project for liability reasons. Responsibility for these models was not confirmed at the time of this updated BIM Ex release. The construction model will incorporate shop drawing level models for the various systems while the architectural model will continue with updates from bulletins and RFI changes throughout construction. At the end of the construction process the models will be linked together to create an asbuilt model for integration with Penn State's facility management software MAXIMO.

Level of Development (LOD) Matrix

Level of Development definitions were established in the BIM Execution Guide as a project team with the following as a result:

- Level 100 Schematic Design
- Level 200 Design Development
- Level 300 Construction Documentation
- Level 400 Construction Administration/ Shop Drawings
- Level 500 Record Drawings/As-Built

A matrix including all project team entities and software platforms was created to determine to what level of detail the models must be created at each milestone in the project. Below, Figure 14 shows a sample of one of these charts.

Design Software - LOD 200 Design Development Phase

MEA	Discipline	AutoCad/ AutoCad 3D	Sketchup	3DS Max	REVIT	Tekla
CA	Arch	X	X	X	X	55
BCJ	Arch	X	X	X	X	F.5
LRS	Larch	Vectorworks			X	3
SE	Civil	X			X	

Figure 14: LOD Matrix - Design Development for Actual Project

Building Information Modeling Process - Thesis

As a part of the BIM thesis, HPR Integrated Design met with the Owner's representative to obtain actual project contractual documentation and requirements to establish real world constraints. Since this academic endeavor does not have contractual constraints HPR Integrated Design did not conform to the University's standard contract language from the Form of Agreement 1-P and 1-C. HPR Integrated Design did recognize OPP's Building Information Modeling (BIM) Addendum v.1.1. The requirements for this document are described in the actual project section for Building Information Modeling above. Figure 15, shows a comparison of how HPR Integrated Design approached the contractual language on this project:

Owner Contractual Requirement	Document	Actual	Thesis
Project designed using Building Information Modeling (BIM) technology.	Form of Agreement 1-P	1	
Intelligent elements within model for integration into the Owner's facilities management system.	Form of Agreement 1-P	1	X
All submitted models and associated Facility Data must be fully compatible with Revit 2012.	Form of Agreement 1-P		
Energy modeling to determine the most effective engineering methods based on design specifications	Form of Agreement 1-P	*	1
The BIM digital information is to be considered the Architect's work product but is ultimately the Owner's property.	Form of Agreement 1-P		X
Develop a BIM Project Execution Plan (BIM Ex) documenting the collaborative process	OPP BIM Standards	1	1
Level of detail in model based on Owner's Level of Detail (LOD) Matrix	OPP BIM Standards	1	X
Model responsibility: the Professional shall maintain the model during design and the Contractor (CM) shall maintain the model during construction.	OPP BIM Standards	*	1
Quality Control: Periodic quality control meetings for coordination validation.	OPP BIM Standards	1	1

Figure 15: Contractual Language Comparison

To conform to the OPP BIM Addendum, HPR Integrated Design developed a BIM Execution Plan utilizing the Penn State University's OPP BIM Project Execution Plan Template v2.0. The following sections of this report will summarize the communication processes, BIM Goals and Uses, model management and level of development matrices.

BIM Goals and Uses

Through collaboration between disciplines and as a team acting as the architect, HPR Integrated Design developed BIM Goals for the BIM thesis project. Major BIM goals include creating seamless workflow integration between all of the disciplines, design a project that is on-time and on/under budget, and maximize the efficiency of the design & coordination process to minimize clashes. A complete list of HPR Integrated Design's BIM Goals can be found in Figure 16 below.

MAJOR BIM GOALS / OBJECTIVES:

PRIORITY (HIGH/ MED/ LOW)	GOAL DESCRIPTION	POTENTIAL BIM USES
High	Maximize efficiency of design & coordination process to minimize clashes both in frequency and severity on-site	3D Coordination, Design Authoring, Design Reviews
High	Seamless workflow integration of all disciplines	3D Coordination, 4D Modeling
High	Turnover the project on-time and on/under budget	3D Coordination, 4D Modeling
High	Increase sustainable design practices to ensure a more energy efficient product	Energy Analysis, Sustainability (LEED) Evaluation
Medium	Perform design reviews in a virtual space for a more effective visualization of potential problems in a 3D environment	Design Review
Medium	Achieve desired LEED certification	Sustainability (LEED) Evaluation, Energy Analysis
Medium	Utilize integrated multi-disciplinary software to become proficient with advanced building modeling and model sharing	Design Authoring
Medium	To evaluate constructability and verify the feasibility of an aggressive schedule	4D Modeling, Design Reviews

Figure 16: Thesis BIM Goals

Through the creation of BIM Goals for the thesis project, HPR Integrated Design chose appropriate BIM uses from a list derived from OPP BIM Project Execution Plan Template v2.0. Major BIM uses include:

- Design Authoring
- 3D Clash Detection
- Construction Sequence Planning (4D Scheduling)
- Cost Estimation (5D)
- Structural, Lighting, and Mechanical Analysis

Figure 17 shows HPR Integrated Design's BIM Use chart from Section D of the BIM Execution Plan. HPR's entire BIM Execution Plan is located on the HPR website.

BIM USES:

X	PLAN	x	DESIGN	x	CONSTRUCT	X	OPERATE
	PROGRAMMING	x	DESIGN AUTHORING		SITE UTILIZATION PLANNING		BUILDING MAINTENANCE SCHEDULING
	SITE ANALYSIS	х	DESIGN REVIEWS		CONSTRUCTION SYSTEM DESIGN		BUILDING SYSTEM ANALYSIS
		X	3D COORDINATION		3D COORDINATION		ASSET MANAGEMENT
		x	STRUCTURAL ANALYSIS		DIGITAL FABRICATION		SPACE MANAGEMENT / TRACKING
		х	LIGHTING ANALYSIS		3D CONTROL AND PLANNING		DISASTER PLANNING
		х	ENERGY ANALYSIS		RECORD MODELING		RECORD MODELING
			OTHER ENG. ANALYSIS	Г	OUT OF SCOPE OF	Т	HESIS PROJECT
		X	SUSTAINABLITY (LEED) EVALUATION				
			CODE VALIDATION	П			
	PHASE PLANNING (4D MODELING)	х	PHASE PLANNING (4D MODELING)		PHASE PLANNING (4D MODELING)		PHASE PLANNING (4D MODELING)
х	COST ESTIMATION	X	COST ESTIMATION		COST ESTIMATION		COST ESTIMATION
x	EXISTING CONDITIONS MODELING	X	EXISTING CONDITIONS MODELING		EXISTING CONDITIONS MODELING		EXISTING CONDITIONS MODELING

Figure 17: Thesis BIM Uses

Communication Processes

HPR Integrated Design continued to develop the BIM Execution Plan early in the fall semester to establish meeting times & locations, communication flow between disciplines and also advisors. HPR developed BIM roles and responsibilities and allocated anticipated time and resources to each BIM use established in section D of the BIM Execution Plan. The information in the following sections can be found in Section E: Organizational Roles/Staffing and Section I: Collaboration Procedures of the HPR Integrated Design BIM Execution Plan.

Communication Flow

HPR Integrated Design documented the process of communication flow between all appropriate personnel involved with the BIM thesis. Communication between course administrators, course advisors, professional practitioners and individual members of the group was established and documented according to Figure 18 below.

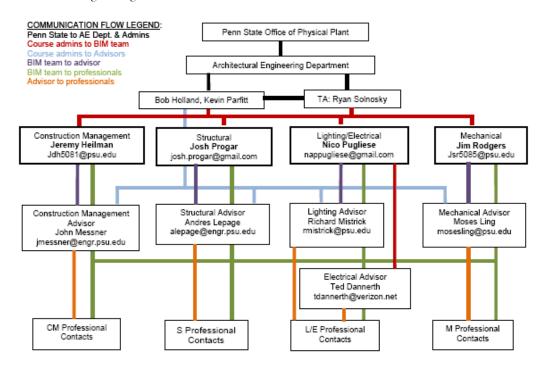


Figure 18: Communication Flow Diagram

This process was completed not out of necessity for this project but as an attempt to follow Owner requirements to develop BIM Implementation strategies which would be much more complex on a real project with multiple entities. Additionally, the construction manager assigned BIM roles and responsibilities to all disciplines and HPR Integrated Design developed an anticipated time and resource allocation for each BIM Use. This information along with the BIM roles and responsibilities can be found in Section E: Organizational Roles/Staffing of the HPR BIM Execution Plan.

Collaboration Procedures

HPR Integrated Design decided as a design team at the beginning of the process that for efficiency design & coordination to occur, collaboration procedures had to be established and refined early in the thesis project to allow for effective team integration. Section I of HPR's BIM Execution Guide was used to document all of the team's collaboration procedures. In this section information about collaboration strategies, meeting procedures, information exchanges and conflict resolution were established in accordance with team discussions early in the project.

Collaboration and Meeting Procedures:

Collaboration procedures were documented to remind the design team of the commitment of collaborative design throughout the project. HPR's commitment to BIM meant valuing other team members input and knowledge supplemented with knowledge of the expert in each discipline to create a high quality product. HPR established that collaboration techniques would include:

- Group Meeting (Primary)
- Autodesk Project Bluestreak
- Texting List-Servs
- Email
- Meeting Minutes

HPR Integrated Design established primary and secondary forms of communication with face to face interactions as encouraged when possible. HPR Integrated Design integrated class and personal schedules using Google Calendars to create a weekly meeting schedule. The schedule is shown in Figure 19, laying out all meetings for different meeting types.

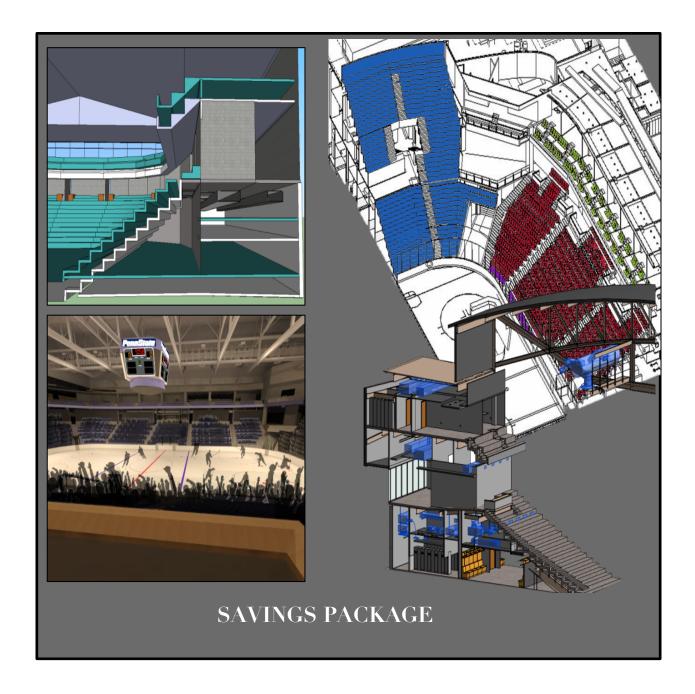

MEETING DAY	TIME	COMMENTS
Monday	6:00p-10:00p	design & coordination meeting
Tuesday	6:00-10:00p	meeting as needed or by appointment
Wednesday	5:30-7:30p	preferred; weekly general team meeting (meeting minutes)
Thursday	6:00-10:00p	meeting as needed or by appointment
Friday	5:30-7:30p	design & coordination meeting
Saturday	by appointment	meeting as needed or by appointment
Sunday	by appointment	meeting as needed or by appointment

Figure 19: Weekly Meeting Schedule

Conflict Resolution:

As a part of the BIM thesis, any architectural decisions had to be made as a collaborative result of all disciplines having equal input. HPR Integrated Design established conflict resolution procedures to allow for the resulting to decision to be as fair and as educated as possible.

Savings Package

Opportunity Statement

Through review of the current design bid packages, it was found that earthwork bid package has a high budget. Digging deeper into this package it was found that the excavation bid package has a budget of \$2.5 million. We felt that this was relatively high for a project of this size. Review of the geotechnical report of the site chosen for the new Penn State Ice Arena concluded that the site has bedrock at a shallow depth below grade. Figure 20 gives a visual of the top of rock map for the site. Color scale for bedrock depth shows bedrock in the darkest red is 5 feet below surface and steps down in increments of 5 feet with the yellow portions at 30 plus feet below grade.

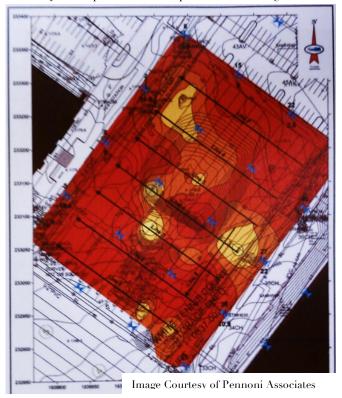


Figure 20: Bedrock Depth

The amount of bedrock needed to be removed causes the cost of excavation increase sharply and also extends the schedule due to how laborious nature of rock removal through blasting.

Excavation Budget and Schedule

Total Budget: \$2,500,000 (3.4 % of overall budget)

Scheduled Time: 35 Days Entire Site

Building Footprint Cost Break Down

Geotechnical engineering services, Pennoni Associates Inc., provided the project team with a geotechnical report that showed boring holes drilled on the site every 100 feet, occasionally drilling at 117 feet. Based on these boring holes, the project team determined that 44,000 cubic-yards of bedrock would need to be removed. This is due to the numerous spikes of bedrock below the elevation grade. Figure 21 shows the various spikes in elevation in relation to the main concourse level. The dark red shows spikes being of 5 to 10 feet below the elevation grade of 1170 feet.

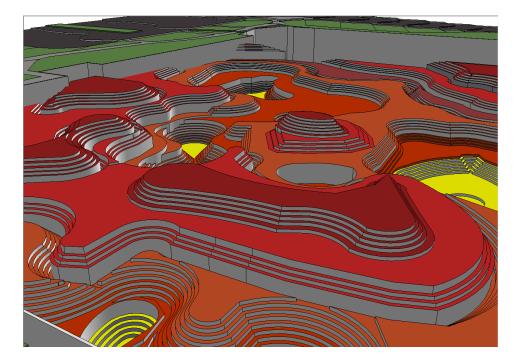


Figure 21: 3D View of Bedrock Below Grade

HPR's construction manager determined the amount of soil and bedrock to removed from the building's footprint by taking an average bedrock elevation at each of the four boring points in a 100 foot by 100 foot section, as well as the 100 foot by 117 foot sections. This was done to give an average bedrock elevation in each of the sections. See Appendix F for the averages of the current design taken for each section.

By taking the averaged elevations, HPR was able to determine the cubic-yardage of rock and soil to be removed. The breakdown is shown below. These numbers include the costs for excavation of foundation footers, elevator pits, the ice melt sump, and the hydro pit. Note, that the amount of rock to be removed is three times less than that of the soil, yet the cost of rock removal due to blasting nearly identical to that of the soil. By interpolation, HPR was able to determine the amount of days needed in the schedule for removal. The overall days to complete the building footprint excavation are 25 days. The costs and durations were determined using *Craftsman's 2012 National Construction Estimator* – 60th *Edition.* See Appendix F for schedule and cost extractions.

	<u>Soil</u>	<u>Rock</u>
Total Cost:	\$582,041	\$532,757
Total Excavation:	73,207 CY	25,401 CY
Scheduled Work Days:	13.5	11.5

Goal

HPR set out to deduce the amount of bread rock excavation by raising the entire event level in elevation while keeping the concourse level at grade to preserve the architect's vision. It was important that we keep codes, sight lines, ADA, price points, plenum space, and the architectural vision all in mind when determining a distance to raise the event level up.

Design Approach

As a group we determined all the factors that could influence the distance we would be able to raise the event level. That distance was determined based upon the variables listed below:

- · Egress logistics of the main arena bowl
- ADA seating
- Sight lines
- The number of seats at different price points
- Constructability
- Plenum space
- · Grading on the southern side of the building
- Loading dock logistics
- Other site restrictions such as building width

Below, Figure 22 shows a sectional view of the proposed changes to the event level. The white surfaces represent the existing conditions and the blue represents the proposed changes. Notice that the plenum below the concourse level shrinks and the slope of the arena seating stays the same. This reduction in plenum space will require a more much closely collaborated plenum space. HPR used a highly integrated Revit model to insure the constructability of this design and used Navisworks to eliminate clashes.

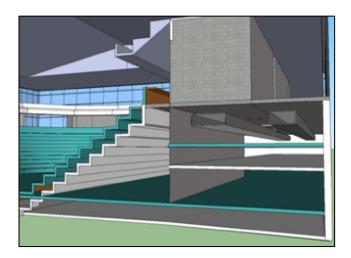


Figure 22: Event Level Elevation Proposed Changes

Figure 23: 3D Sectional View of South Corner of Arena Bowl

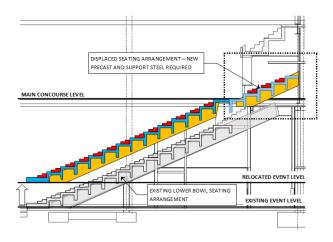


Figure 24: Sectional View of Reallocated Seating

Business Model

HPR Integrated Design established the seating capacity and price points of these seats as a critical design factor during the raising of the Event Level. To become more familiar with the business model for the arena, HPR investigated preliminary feasibility studies conducted by Crawford Architects in 2010 as well as obtain information through continued communication with an Owner's representative within the athletic program's financial sector.

HPR Integrated Design investigated the 2010 feasibility study from Crawford Architects and developed documentation to allow for quality control for both seating capacity and the profitability of any design changes by looking at price points from comparable hockey programs. According to the feasibility study, the Owner asked for the architect to use two different case studies for comparison for the Penn State Ice Hockey Arena project: the Goggin Ice Center at the University of Miami (OH) and the new Compton Family Ice Arena at the University of Notre Dame. The feasibility study also investigated a prior feasibility study that was completed in 1999 to evaluate the necessity for an ice hockey arena.

The results of the 2010 feasibility study concluded the results shown below in Table 1.

Facility - Arena and Auxiliary Ice Sheet	Seating Capacity	Opened	Number of Ice Sheets	Gross Area in Square Footage	University Enrollment
New Penn State Hockey Arena	6,000	2013	2.0	216,240	45,000*
Penn State 1999 Study - Option 5	6,000	1	2.5	214,094	37,000*
Compton Family Arena - Notre Dame University	4,000	2010	2.0	191,197	8,500
Goggin Center - University of Miami (OH)	3,000	2006	2.0	170,033	16,000

^{*}Penn State University Park Campus Only

Table 1: 2010 Feasibility Study Comparisons

The feasibility study determined that the new Penn State Ice Hockey Arena should consist of a 6,000 seat competition arena with an additional auxiliary or community sheet of ice. The study stated that the 6,000 seat capacity should be broken down into 4,000 general admission seats, a student section or "Section E" that should be around 1,000 seats and 500 club seats on a mezzanine level. The business model developed by the Pennsylvania State University also required a total of 24 luxury suites (12 in the present design and the option for future expansion to another 12 luxury suites.

From this information, HPR Integrated Design looked at the contract documents, specifically architectural drawing A0-20 Seating Bowl Plans, which detailed the existing seating arrangement which totaled 6,031 seats in the main arena and an additional 300 seats in the community rink for a grand total of 6,331 seats in the entire facility.

HPR Integrated Design extracted the information from the "Seating Counts per Seating Section" chart on A0-20 and established price points for each seating section to track profitability for the redesign changes. Table 2 shows a portion of the seating chart with price points established by color. The entire seating chart can be found in detail located in Appendix F. Through investigation into other programs, HPR Integrated Design decided to follow the Notre Dame Ice Hockey program in terms of ticket prices and profitability because of the similar lower bowl and upper mezzanine seating arrangement. Table 5 shows the assumed ticket prices and profitability for a sold-out hockey game at the new Penn State Ice Hockey arena.

								PENI	N STA	TE ICE A	RENA							
							Se	ating	Counts	per Seatin	g Section							
		Seating Type Count																
	Seating Section	18" Bench	19" Seat	20" Front Row Seat	19" Gub Seat	21" Club Seat	24" Suite Seat	36" Loge Seat	21" Press Seat	19" Seaton Removable Platform	20" Seaton Removable Platform	High Top Seat	Coaches Seating	Wheelchair Seat	Companion Seat	Total		Notes
	105		183	7												190		
	106		359	20												379		
	107		289													289		
	108		359	20												379		
	109		262	10												272		
	110		262	12												274		ole platform seating
	111		212	12												224	Removal	ole platform seating
	112		245	10						16	2					273		
	113		245	10						16	2					273		
60	114		365	25												390		
Lower Level Seating	115		307	10					16							333		
ea	116		365	25												390		
<u>~</u>	117		165											3	3	171		
Š	205							8								8		
P	206							14						2		16		
ē	207							7						4	4	15		
ð	208							14						2		16		
_	209							9						1		10		
	210													5	5	10		
	211													5	5	10		
	212													8	8	16		
	213							14						1		15		
	214													8	8	16		
	215								14				4			18		
	216													8	8	16		
	217							7						1		8		
	Sec. Total	0	3618	161	0	0	0	73	30	32	4	0	4	48	41	4011		
Ctudost	301	307												2	2	311		
Student	302	412												6	6	424		
Seating	303	307												2	2	311		
Section	Sec Total	1026		n	0	0	n	0	n	n	0	n	n	10	10	10/16		

Table 2: Existing Seating with Price Points

F	PROPOSED PRICE POINTS:		
	General Admission	3977	seats
	General Admission - Students	1046	seats
	Club Level	695	seats
	Suite	279	seats

Table 3: Existing Seating Capacity per Price Points

	Glass		Low	er (non- s)	Me	zzanine	Club	
Adults	\$	20.00	\$	14.00	\$	20.00	\$ 40.00	
Senior/Youth	\$	20.00	\$	7.00	\$	20.00	\$ 40.00	

http://www.und.com/tickets/nd-tickets-hockey.html

Table 4: Notre Dame University Ticket Prices

	Penn State Ice Are	na - Single Game Ticket Sa	les Profits:		
	Glass Seats:		161	seats	
		\$ 3,220.00		per game	
	Lower Bowl:		3816	seats	
		\$ 40,068.00		per game	
٥	Club Seats:		695	seats	
EXISTING		\$ 13,900.00		per game	
EX	Suite Level Seats:		279	seats	
		\$ 11,160.00		per game	
	*Student Section:		1,046	seats	
		\$ 5,230.00		per game	
	*Assumed \$5 dolla	r student tickets			
	GRAND TOTAL	\$ 73,578.00		per game	

Table 5: Profitability Study - Existing

HPR Integrated Design established these charts with educated assumptions that would allow the design team to track seating capacity and profitability or price points concurrently as the arena's alternative seating layout was established.

Additionally, HPR Integrated Design conducted interviews with the athletic department Associate Athletic Director, Greg Myford, to understand more about the business model and understand further the cost impact of facility maintenance and financial expectations for the new arena. From this interview, HPR Integrated Design learned that the Owner expects the hockey program to be a self-sustaining varsity sports within five years of its initial conception.

Sight Lines

An in-depth study on sight lines within the main arena was conducted by HPR to consider the consumer experience for all visitors with ADA considerations at the forefront of the decision making process. HPR Integrated Design investigated the contract documents, specifically architectural drawing A0-21: Sightline Sections. Figure 25 below shows the existing seating arrangement with excellent existing site lines.

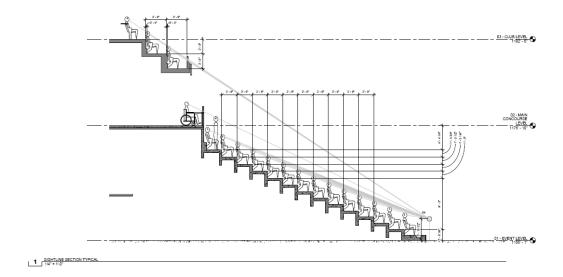


Figure 25: Existing Typical Sightline Section

Studying the typical sightline sections from the existing design revealed that site lines were a critical factor in the design of the lower bowl precast stadia slope. As per ADA code section 4.33 the code does not specify a minimum requirement for ADA occupant sightlines, therefore it was assumed that the sightlines required by IBC 2009 were acceptable for the ADA seats. While this is not a code requirement at the present time, HPR Integrated Design decided that it was important to maintain the best possible sight lines for handicapped customers at any point during an event. The existing seating arrangement included an approximately 4'-0" tall wall behind the last row of seats to allow for a person to stand up and handicapped seating above to still have an unobstructed view of the ice.

It was determined that the architect had created a seating arrangement that was driven by the sightlines of the visitor and any change in Event level elevation would result in obstruction of handicapped sight lines. Therefore, HPR Integrated Design made a collaborative decision to continue to raise the Event Level and address the sightlines of the arena in the following manner:

- Remove seats in rows directly in front of handicapped seating to allow for optimum site lines.
- Redesign the vomitories with ADA compliant (1:12 slope) ramps to allow for handicapped seats to be at a higher elevation to optimize site lines.

HPR Integrated Design decided to allow another variable in the raising of the Event Level control the design and make necessary corrections to the plans to optimize the sight lines for handicapped personnel visiting the arena afterwards.

Architectural Considerations & Applicable Codes

The raising of the Event Level and reallocation of seating could potentially change architectural design code compliance design considerations. HPR conducted an in-depth code compliance check with the 2009 International Building Code (IBC 2009) with guidance from architectural academic advisors.

Accessibility Issues

HPR Integrated Design checked the minimum required number of ADA accessible seats using Table 1108.2.2.1, shown in Table 6, in the 2009 IBC.

CAPACITY OF SEATING IN ASSEMBLY AREAS	MINIMUM REQUIRED NUMBER OF WHEELCHAIR SPACES
4 to 25	1
26 to 50	2
51 to 100	4
101 to 300	5
301 to 500	6
501 to 5,000	6, plus 1 for each 150, or fraction thereof, between 501 through 5,000
5,001 and over	36 plus 1 for each 200, or fraction thereof, over 5,000

TABLE 1108.2.2.1
ACCESSIBLE WHEELCHAIR SPACES

Table 6: Accessible Wheelchair Spaces

Using Table 1108.2.2.1 and using the 6,031 seating capacity of the main arena, HPR Integrated Design determined the minimum number of ADA seating spaces is 29 total seats. Equation 1 shows the calculation of minimum total ADA seats in the lower bowl section.

Equation 1

Min. Accessible Wheelchair Spaces = 6+1((3977 seats - 500 seats/150) = 29 Total ADA Seats

HPR Integrated Design also kept in mind criteria for providing at least one companion seat with every ADA wheelchair space in accordance with Section 1108.2.3 complying with ICC A117.1. Additional requirements for egress were conducted to ensure code compliance with an alternative seating arrangement in the lower bowl pending the raising of the event level. Occupancy loads for the alternative seating design were calculated per Table 1004.1.1 in the 2009 IBC, which gives the maximum floor area allowances per occupant. Section 1004.7 was utilized for fixed seating, which simply calculates occupancy load based on the number of seats in each seating section.

Minimum required egress width was determined using IBC 2009 section 1005.1 using Equation 2, which states that the minimum width is the occupant load multiplied by 0.3. Below is a sample calculation for egress in Section 106, which is one of the largest sections for occupancy load.

Equation 2

Min. Required Egress Width = 210 occupancy load x 0.3 = 63" or 5.25'.

The existing aisles are designed to be 6'-0" wide which allowed for an additional 30 seats to be placed in the largest section without any code compliance issues for egress. If necessary for sight line issues described in the previous section, vomitory ramps would need to comply with section 1010.2 that states that the minimum slope of ramps "have a running slope not steeper than one unit vertical in 12 units horizontal (8% slope)."

Another code compliance issue that was determined to be a critical factor to track as the team decided on the dimension to raise the event level was minimum ceiling height in egress areas. The existing design had a 10'-0" ceiling in the vomitories. According to section 1003.2 in the 2009 IBC, the minimum ceiling height in an area for means of egress is 7'-6". Although this is a minimum, HPR determined that this dimension was too low for best practices in architectural design and therefore may require adjustments to the above Club Level elevation even if the minimum head clearance of the alternative design is code compliant.

The 2010 ADA standards for accessible design were also investigated to determine minimum dimensions required for handicapped maneuvering and clear floor space. Figure 26 below shows Figure 304.3.2 out of the 2010 ADA standard, which shows the T-shaped turning space required for ADA compliance.

304.3.2 T-Shaped Space. The turning space shall be a T-shaped space within a 60 inch (1525 mm) square minimum with arms and base 36 inches (915 mm) wide minimum. Each arm of the T shall be clear of obstructions 12 inches (305 mm) minimum in each direction and the base shall be clear of obstructions 24 inches (610 mm) minimum. The space shall be permitted to include knee and toe clearance complying with 306 only at the end of either the base or one arm.

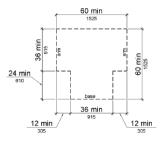


Figure 304.3.2 T-Shaped Turning Space

Figure 26: Figure 304.3.2 - 2010 ADA Standard

Additionally, the ADA accessible seat arrangements must conform to section 305.3 which states that the clear floor space for a code compliant ADA wheelchair seat is 48" min x 30" min. HPR Integrated Design carefully considered all of the above mentioned code compliance issues in the raising of the event level and balanced all of the design variable to maintain a code compliant facility.

Determining the Optimal Distance

Sight lines and ADA Seating

When HPR Integrated design first proposed the raising of the event level it was our assumption that the max distances we could raise the event level would be restricted by the plenum size. As we dove into the design we quickly realized that although the coordination of the plenum space would be a challenge, the biggest limiting factor became a combination of the number of seats, ADA in particular, and sight lines.

Based on the sight line study we knew that seats would have to be removed in front of the ADA seats to make the raising of the event level significant. A quick look at the existing plans shows that there is a row of ADA seats that surrounds the entire rink. Although the plans only show the ADA seats located near the aisle it was HPR integrated Design's assumption that an ADA seat could be put anywhere in that top row to allow for flexibility. Figure 27 shows the seats that would have to be removed to accommodate sight lines in these areas. By doing this we would lose a total of 325 seats or roughly 5.4% of the arena's seating capacity. This was just outside of the range HPR Integrated design deemed acceptable so we would have to relocate the seats we removed. It was our goal to keep the same number of seats or increase them if at all possible.

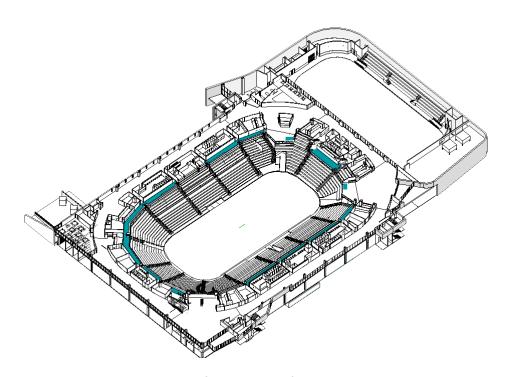


Figure 27: Removed Seating

Based on our code analysis we found that the current design provided more than double the required ADA seats. We could reduce the number of seats that had to be removed by relocating some of the ADA seat and eliminating others. The original design called for 48 ADA seat and after this

BIM THESIS FINAL REPORT

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

rearrange our proposed design has 31. Once the ADA seats were located we created a boxed in seating area around them. This allowed us to only remove the seats in front of the ADA seats.

By making the changes previously noted HPR Integrated Design determined that the maximum distance the event level could be raised was 1'-8". This number was determined by finding the maximum height that still allowed a person sitting in an ADA seat to see over the shoulder of the first spectator in front of them while standing. Although this is not the ideal sight line it was deemed acceptable for this academic exercise. With the help of some preliminary cost estimation we determined that to make this exercise feasible, the event level would have to be raised more than this. To help increase the amount we could raise the event level we would have to raise the height of the ADA seats. We had no intensions of changing the elevation of the main concourse however; we wanted to maintain that level because it allowed the patrons to enter the arena on the main concourse without any stairs. Increase the elevation of the ADA seats without raising the main concourse HRP Integrated Design proposed the vomitories that link the Main Concourse with the main bowl was sloped up at a rate of 1:12. This adjustment lifts the ADA seats up another 1'-8" and increases the Maximum dimension to 3'-2".

Finalized Sight Lines

HPR Integrated Design investigated sight lines as a design factor prior to figuring out the optimal dimension to raise the event level. It was determined that the site lines had been a critical factor in the design of the lower bowl precast stadia slope and any raise in elevation would result in sight line issues. HPR decided that the raise in elevation would be conducted and then the team would respond to sight line issues accordingly.

By raising the event level only by the determined 38", the sight lines of the lower bowl for regular general admission seating was not affected since the entire level was raised as a whole. ADA handicapped seating was greatly affected however and required design alterations to create satisfactory sight lines once again. Although the 2001 version of the ADA standard is currently adopted by the AIA, HPR Integrated Design decided to follow the new, stricter 2010 version as much as possible to provide the Owner with the best possible product.

According to the Department of Justice's 2010 ADA standard code regulations, the code requires that "Wheelchair seating locations must provide lines of sight comparable to those provided to other spectators... A comparable line of sight allows a person using a wheelchair to see the playing surface between the heads and over the shoulders of persons standing in the row immediately in front and over the heads of the persons standing two rows in front." After the initial raise in elevation of the event level, ADA sight lines did not meet these requirements.

HPR Integrated Design decided to make two modifications to the seating arrangement to try to meet all criteria in the 2010 ADA standard. The first modification was to remove all seats in the row directly in front of the ADA seating to allow clearance and improve sight lines. As shown in figure xx, HPR removed all seats in the top row of the lower bowl to be conservative and replaced these lost seats above the main concourse in a raised seating arrangement. This modification improved sight lines but did not create a satisfactory sight line for ADA seating. Additionally, HPR decided to use ramps in the vomitories that satisfied the IBC 2009 section 1010.2 for ramps that cannot have a slope of greater than

1:12. This allowed for an elevated platform which was raised an additional 1'-8" higher than the main concourse level.

Structural calculations were performed to provide supplementary framing to allow for this elevated platform and steps were added to the lower bowl to accommodate the change. As shown in Figure 30 below, the final sightlines were set for ADA seating which allow meet the criteria for ADA seating to see over the shoulder of the first row in front of the seating platform and over the head of the following rows when standing. Meeting this criterion was not required but established as a critical design factor that HPR decided must be met for best design practices.

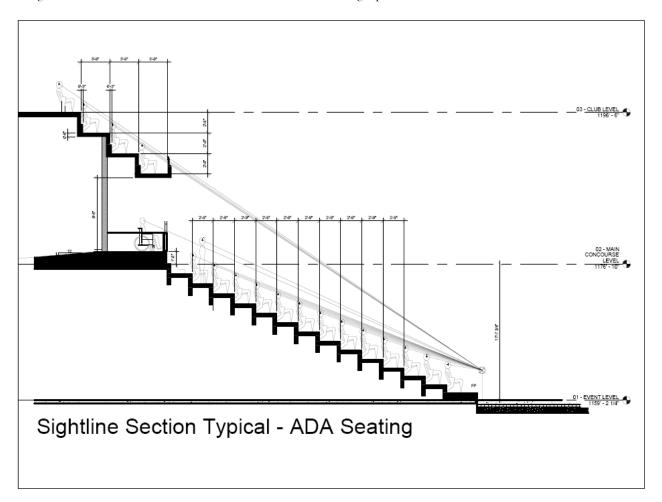


Figure 28: Typical Sightline Sectional View - Lower Bowl

Figure 29: Proposed Sloped Vomitories

HPR Integrated Design also conducted similar sightline studies for the student section and typical lower bowl section without ADA seats to confirm satisfactory sightlines. The new proposed seating arrangement was successful in creating sightlines that allow for all visitors to the arena to enjoy the event equally. Additional sightline sections can be found in Appendix F.

Figure 30: Proposed ADA Sightlines

In Figure 30, the image on the left shows the original design and the image on the right shows the new sightlines

Plenum Check

Once we had determined this distance we began modeling the changes. There is an intense amount of coordination required when you start shifting levels around, especially when not all model elements are linked to levels. The first step was to actually raise the event level up 38". This had to be coordinated in every disciplines model because of the use of a federated modeling system. When all the models had been updated and any conflicts caused by these changes resolved, a check was done to make sure the new plenum size was indeed large enough. The main duct runs were sized and preliminary locations for ducts, pipes, and electrical conduit were determined. Very little was actually modeled at this point. The objective was to determine if the plenum space was adequate for all our systems. Figure 31 shows some of the modeling done at this stage.

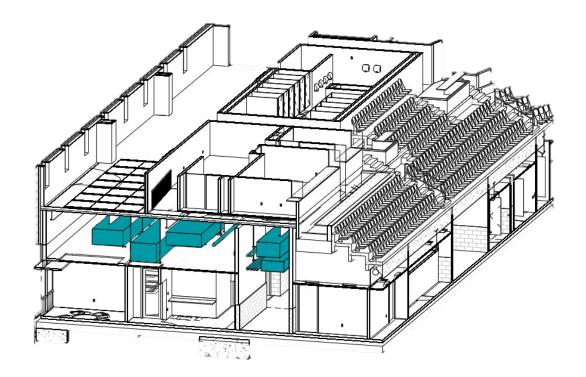


Figure 31: Proposed Plenum Space

Once the plenum was deemed acceptable the mechanical designer went forward with more detailed modeling while the keeping in mind the electrical designer's requirements. At this time the rest of the team went forward with determining the best place to put the displaced seats.

Relocation of Seats

Once the ADA sight lines meet HPR Integrated Design's standards and the plenum space was checked we began the process of adding seats back in the main arena bowl. We want to keep these seats at the same price points as the once removed so no to alter the business model. Figure 32 show a schematic sketch on how HRP Integrated Design planned to replace the lost seats. The lay out called

for seat to be placed in the inter aisle the surrounded the main arena bowl. This would force patrons to leave the main bowl and head to the main concourse in order to switch sections.

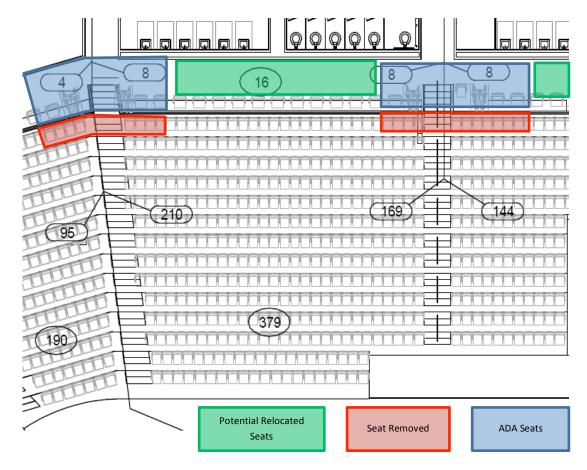


Figure 32: Schematic of Seat Reallocation

To accomplish this extra stairs would have to be added to allow access to the upper seats. Based on the code analysis HPR Integrated Design preformed we determined that two sets of stairs were required for each of the upper sections. Figure 33 shows the final design. This alternative design lead to a total net gain in seats, the total gain was 154 seats, all at the same price point as those that were previously removed.

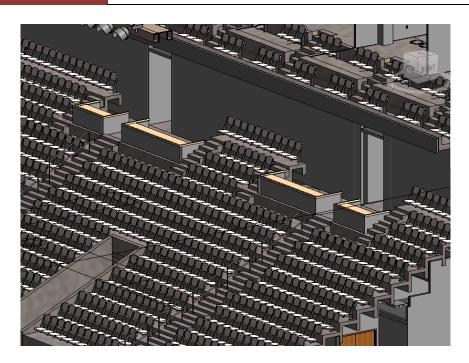


Figure 33: Final Design of ADA Seating with Added Seating

Business Model Implications

HPR Integrated Design used seating capacity and price point charts derived from the contract drawings to track the business model throughout the Event Level raising. Throughout the elevation shifting process explain in the sections prior, real time tracking for seating capacity and price points was conducted. Table 7 shows a comparison of the existing and proposed alternative seating arrangement from the shifting of the event level.

Penn State Ice Arena - Seating Capacity & Profitability Study								
SEATING CAPACITY					PROFITABILITY/PRICE POINTS			
Seating Price Point	Existing	Proposed	Net Change					Net Change
Lower Bowl (GA)	4,011 seats	4,154 seats	3.57%	\$	43,288.00	\$	45,146.50	4.29%
Student Section (GA)	1,046 seats	1,023 seats	-2.20%	\$	5,230.00	\$	5,115.00	-2.20%
Club Level Seating	695 seats	695 seats	0.00%	\$	13,900.00	\$	13,900.00	0.00%
Suite Seating	279 seats	279 seats	0.00%	\$	11,160.00	\$	11,160.00	0.00%
TOTAL	6,031 seats	6,185 seats	2.55%	\$	73,578.00	\$	75,321.50	2.37%

^{*}Profitability based on a per game basis and the assumption of a sold out game

Table 7: Comparison of Seat Capacity & Profitability

After raising the event level in elevation by 38" (3'-2") and displacing seating lost due to sight lines considerations to above the main concourse level, HPR Integrated Design's alternative seating arrangement gave the arena 154 additional seats, which is roughly 2.55% of the original seating capacity. As shown in Table 7, the lower bowl added 3.57% more seats for general admission ticket sales but lost

BIM THESIS FINAL REPORT

HPR Integrated Design

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

2.2% of student section seats. The club level and luxury suites seating capacity was not affected with this alternative seating arrangement.

As described in the rearrangement process in the prior sections, the displacement of seats lost for ADA seating site lines was displaced to above the main concourse which meant that seating capacity in any section in the lower bowl was not lost rather a few additional seats were added. The student section, also known as "Section E" however did not have the ability to displace seats and an entire row of seats was lost below ADA seats to allow for acceptable sight lines and ultimately Section 302 was the only section that lost seating. Note that seating capacity and price point charts can be found it their entirety in Appendix F.

Using assumptions for ticket prices from the comparable Notre Dame ice hockey program and the assumption of a sold out hockey game, HPR Integrated Design was able to project approximately 2.5% more profitability for the arena with an increase in general admission tickets only. Therefore, the price points for the arena seating has not been raised rather a larger supply of general admission seats was provided.

Americans with Disabilities Act (ADA) Seating

The American with Disabilities Act (ADA) requires that all new arenas must be accessible to people with disabilities so they, their families, and friends can enjoy equal access to entertainment, recreation, and leisure. According to the 2010 ADA Standards for Accessible Design, section 28 CFR 35.151G for New Construction, wheelchair spaces and companion seats are to be dispersed equally to all levels that include seating served by an accessible route. The ADA code continues to state that wheelchair seating must be an integral part of the seating plan so that people using wheelchairs are not isolated from other spectators or their friends and family.

It is important to note that the 2001 ADA Standards for Accessible Design are currently adopted by AIA. HPR Integrated Design determined that they would commit to trying to design to the more stringent 2010 ADA code whenever possible. HPR investigated the existing arena's ADA seating plan shown in Figure 34 below to establish the criteria to maintain during the redesign process.

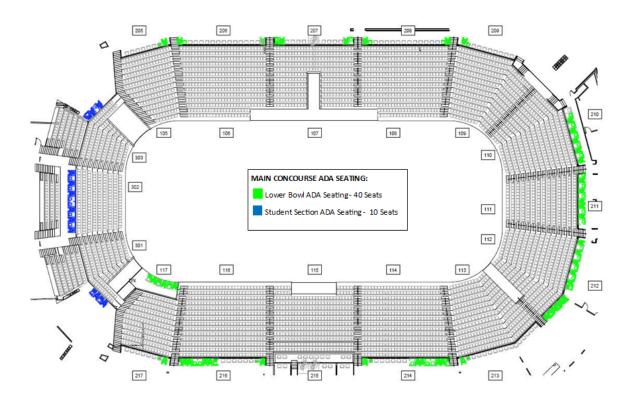


Figure 34: ADA Seating - Main Concourse Level Current Design

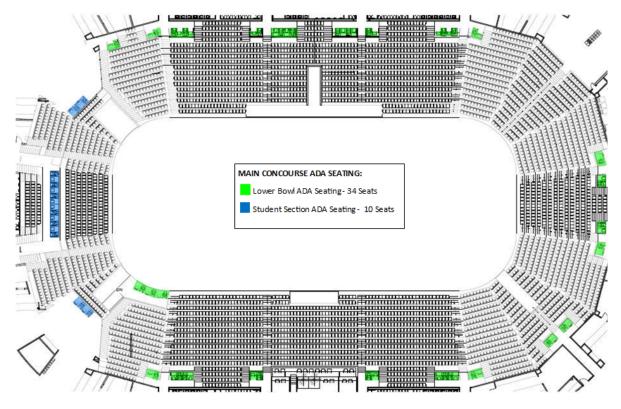


Figure 35: ADA Seating - Main Concourse Proposed Layout

Due to relocation of displaced seating resulting from ADA sight line considerations, the main concourse inner ring design scheme was altered to an alternative seating arrangement that includes seats above the main concourse level. Due to this change in seating arrangement, HPR decided to create flat alcove platforms where ADA wheelchair accessible seating could be provided. All alcoves meet 2010 ADA regulations per section 305.3 and meet criteria for maneuverability and reach requirements.

It was important to HPR to remain code compliant throughout this process; however, due to limited spatial availability not all ADA seats were displaced or relocated to meet the existing design. HPR Integrated Design is compliant with the minimum number of ADA required seats per IBC 2009 Section 1108.1. Table 8 below documents the changes in ADA seating.

Penn State Ice Arena - ADA Handicapped Seating Code Compliance Check							
ADA Handicapped Seating EXISTING PROPOSED PROPOS					PROPOSED		
Seating Level	Existing	Proposed	Net Change	IBC Table 1108.2.2.1	IBC Table 1108.2.2.1	Code Compliance	
ADA Seating - Lower Bowl	40 seats	34 seats	-17.65%	29 seats	30 seats	MEETS CRITERIA	
ADA Seating - Student Section	10 seats	10 seats	0.00%	10 seats	9 seats	MEETS CRITERIA	
ADA Seating - Club Level	24 seats	24 seats	0.00%	7 seats	7 seats	MEETS CRITERIA	

Table 8: ADA Handicapped Seating - Code Compliance Check

Alternative Seating Layout

Through the process of raising the event level and the club level, an alternative seating layout was created by HPR Integrated Design. No changes were made to the club level racker seating other than the 4'-0" rise in elevation to allow for comfortable head clearance on the event level. Major changes in the lower bowl seating arrangement included:

- Rows in front of ADA handicapped seating areas were removed to allow for sight lines to meet criteria per 2010 ADA standards around the top row of the lower bowl.
- Displaced seating was added above the main concourse on raised seating platforms that replaced the inner circulation ring of the arena.
- ADA seating alcoves were designed to allow for ADA seating to be located equally around the main concourse level to meet criterion for 2010 ADA standard.

The following figures demonstrate the change in seating arrangement and the location of displaced, removed and new seats. Changes in ADA seating can be found in Figure 35 in the above section. Figure 36 shows the existing seating layout from the contract drawing A0-20: Seating Bowl Plans. Figure 37 shows a diagram of which seats were removed, displaced and/or added to the arena following the changes made as part of this value engineering opportunity. Finally, Figure 38 shows the alternative seating layout that HPR Integrated Design has proposed.

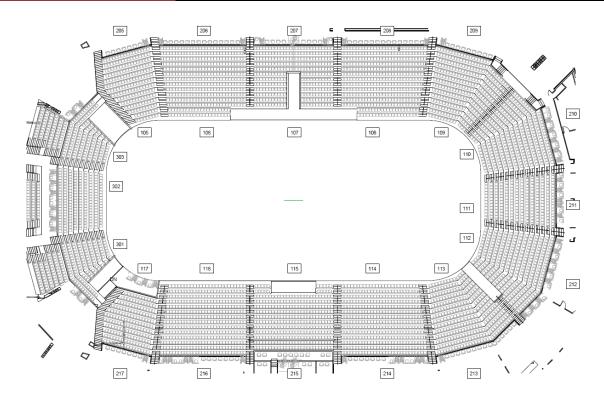


Figure 36: Lower Bowl Seating Arrangement - Existing

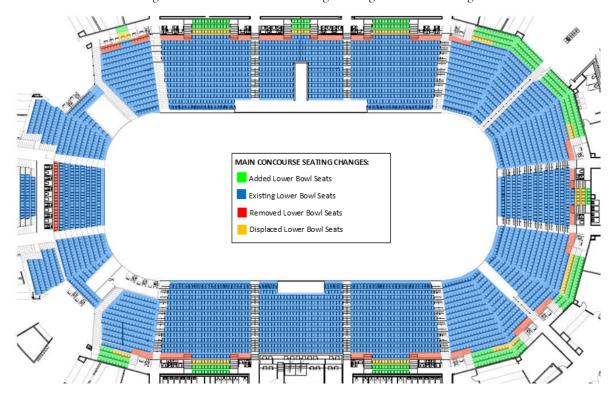


Figure 37: Main Concourse Seating Changes

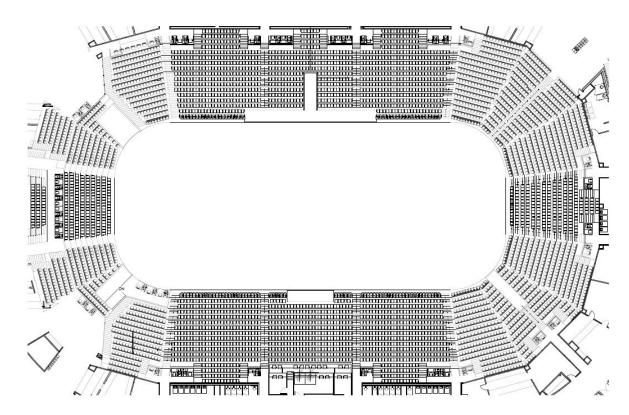


Figure 38: Proposed Lower Bowl Seating Arrangement

Collaborative Plenum Design

The use of BIM technologies was essential for designing a plenum space for the event level that was clash free. The electrical, mechanical, and structural systems were all modeled in their disciplines central model and then shared with the other disciplines via the federated model system. This allowed use to monitor each other's changes and progress throughout the modeling process. We were also able to perform formal clash detection once the design had made substantial progress. HPR Integrated Design went in to the design knowing that integrating our designs from the beginning would help to reduce the number or clashes and conflicts that would have to be resolved later. Using the federated modeling system made it essential to communicate with each other. Simply synchronizing with an individual's central model did not completely update other disciplines changes. It was also important to reload the other linked in central models. This would insure that any changes made by other disciplines would be shown in your central model. When a team member made a significant change to the design they would then notify the other team member to reload in the other central file. Figure 39 shows a graphical representation of this process.

Figure 39: Graphical Representation of Synchronizing of Local Files

Level of Development

While designing the mechanical and electrical systems for the event level HPR Integrated Design had the task of determining what needed to be modeled to prove this was indeed constructible and what would be a waste of valuable time to model. HPR Integrated Design understood that it was important distinguish between both spaces and disciplines, meaning that in certain spaces the mechanical would be taken to a LOD of 2 where the electrical design would only need to go to LOD 1.

In order to verify the validity of the mechanical of the event level plenum it was necessary the HPR Integrated Design model the mechanical system in the rest of the building. This was done to show where the main ducts run for all the spaces in the building. This allowed HPR to determine exactly what ducts would be in the event level plenum space and what duct would not. Since the goal of this modeling was strictly to show general location it was unnecessary to model in a high level of detail. The majority of this modeling was done with a LOD of 1.

In contrast the mechanical systems on the event level required much more detailing. This is directly related to the goal of the modeling procedure. On the event level we wanted to prove the constructability of the system. Knowing that HPR Integrated Design recognized that both location and space where critical. Size of ducts and pipes needed to be accurate and although location was not final we need to be in very close proximity to the final location. This was not just for main duct and pipe runs but also for VAV units, maintenance clearances and diffusers.

Discipline Modeling	Location	Goal of modeling	LOD
Mechanical	Club and Main Concourse	Show general location of ducts to determine which duct would be in the event level plenum	100
Mechanical	Main Arena Bowl	Coordinate the Main Arena Roof System, and needed for main arena renderings	300
Mechanical	Event Level Plenum	Prove the constructability of the tighter plenum caused by the raising of the event level.	300
Electrical	Entire building	Show normal power distribution system to panel boards and motor control centers	300
Lighting	Main Arena Bowl, Event Level	Show location of luminaires for coordinating plenum space	200
Structural	Main Arena Bowl & Event Level Plenum	Show accurate depth of steel dimensions for MEP designers to coordinate systems with	300

Figure 40: BIM Level of Development

Mechanical Design

HPR Integrated Design used the same general systems as the original design showed in the design development drawings we received. The loads were calculated using a Trane Trace model and compared with the airflows shown on the design drawings, and with rule of thumb design practices. As HPR got deeper into the design we realized that the mechanical drawings were very incomplete at that the systems suggested where at times way oversized to provide and early conservative design. This discovery led to a CFD study of the Men's Locker room and AHU-7. HPR Intergraded Design was not concerned with Ice generation system from a mechanical point of view. It was our understanding that these systems are generally designed by a special contractor. For us to look in to the design of an Ice Generation System did not fix in to any of our design focuses nor did it facilitate much interdisciplinary collaboration. HPR Integrated Design did however look into the factors that affect the load on the ice generation systems. This research can be found in Appendix F.

Calculating Loads

A trace model was created to calculate the loads on the arena. We used 12 different templates for Internal Loads, Air flows, and Rooms. We created two separate templates for Thermostat, one for general spaces and a separate for ice spaces. The conditions for these spaces can be seen in Figure 41. The twelve templates that were used for Internal Loads, Air flows, and Rooms were; concessions, concourse, corridors, equipment rooms, ice, media, office/suite, restroom/lockers, restaurants, stands, stands and work out areas. People where not entered in the internal load template, but rather individually entered in to the room data based on the DD drawings HPR received.

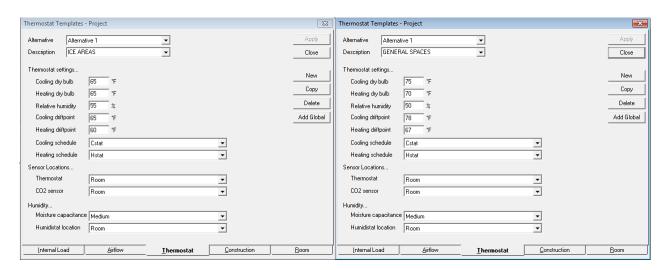


Figure 41: Thermostat Templates for Different Spaces within the Arena

This process was very straight forward except for modeling the sheet of ice. Since HPR Integrated Design was not interested in designing the ice generation system we only needed to find how the sheet of ice would affect the building loads. This was done by creating a partition in the space that had the ice sheet that was the same area as the floor and had an internal surface temperature of approximately $20^{\circ}\mathrm{F}$

Sizing Duct

Sizing duct in the event level had to be done very accurately, under sizing the duct could cause the duct not to fit if changes had to be made and oversizing could cause it not to fit in the plenum space in the first place or an added cost in material. Low pressure duct was generally round and sized with a duct-ulator at 0.08 inch friction loss per 100'. Medium pressure was generally rectangular and sized at 2,000 fpm. The ducts in the Event level plenum space included supply for AHU-5,6,7,8,9, return for AHU-5,6, exhausts for AHU-7,8,and 9. The return for AHU-5 is mainly a plenum return with a few transfer grilles. AHU-5 serves the office spaces. There is also the return from the main arena bowl (AHU-10 and 11).

IAQ and CFD study of Men's Locker Room

The men's and women's locker rooms are served by (2) 11,000 CFM 100% OA AHUs. This comes out to roughly 1.75 CFM/SQFT. This number takes the CFM supply of the AHU and divides it by the entire area served by the AHU. That area includes the locker room, showers, restrooms, trains rooms, and corridors. Code requires 0.5 CFM/SQFT. To meet the MAE requirements HPR Integrated Design will perform a CFD analysis on the locker room to see if the code number is satisfactory or if the ventilation rate calculated using equations from and indoor air quality course (AE 552).

<u>Plans</u>

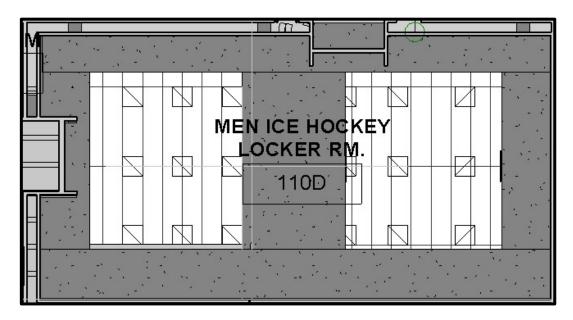


Figure 42: Ceiling Plan for Men's Locker Room

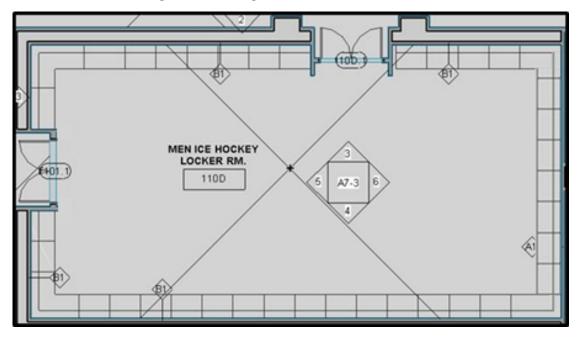


Figure 43: Floor Plan for Men's Locker Room

Code Requirements

According to ASHRAE Standard 62.1 the Minimum Exhaust Rate for a locker Room is 0.5 CFM/sq-ft. Since this space is served by a 100% outdoor air unit the exhaust rate is also the supply rate.

TABLE 6-4 Minimum Exhaust Rates

Occupancy Category	Exhaust Rate, cfm/unit	Exhaust Rate, cfm/ft ²	Notes	Exhaust Rate, L/s·unit	Exhaust Rate, L/s·m ²	Air Class
Locker rooms	-	0.50			2.5	2

^{*}See table 6-4 in its entirety in Appendix A

Figure 44: Code - Minimum Exhaust Rates

Hand Calculating Exhaust Rate

Using knowledge gained in AE 552 on indoor air quality I calculated the amount of fresh air that must be supplied to a space to remove one olf from that space. This calculation was done assuming only 20% of the occupants would be dissatisfied.

$$PD = 395 \times e^{(-1.83 \times q^{0.25})}$$

$$PD = 20\%$$

$$20 = 395 \times e^{(-1.83 \times q^{0.25})}$$

$$\ln(.051) = e^{(-1.83 \times q^{0.25})}$$

$$q = 7.06 \approx 7 \frac{L}{olf} \approx 15 CFM$$

15 cfm must be supplied to remove a single olf to maintain a 20% dissatisfaction. Next, I had to calculate the number of olfs in the space. I assumed 22 people and a moderate activity level would be in the locker room at any time. Based on the numbers in Figure 45,the 22 people at moderate activity levels produce 10 olfs each.

2009 ASHRAE Handbook—Fundamentals Table 3 Sensory Pollution Load from Different Pollution Sources						
Source	Sensory Load					
Sedentary person (1 to 1.5 met)	1 olf					
Person exercising						
Low level (3 met)	4 olf					
Medium level (6 met)	10 olf					
Children, kindergarten (3 to 6 yrs)	1.2 olf					
Children, school (4 to 16 yrs)	1.3 olf					
Low-polluting building	0.01 olf/ft ²					
Non-low-polluting building	0.02 olf/ft ²					
Source: CEN (1998)	0.02 007					

Figure 45: Table 3 Sensory Pollution Load from 2009 ASHRAE Handbook

$$(22 people) \times \frac{10olf}{esp} = 440 olf$$

$$15 \frac{cfm}{olf} \times 220 olf = 3300 cfm$$

$$3300 cfm \div 1365 sf = 2.4 cfm/sf$$

Though these calculations the design ventilation rate should be roughly 2.5 cfm/sf. This does not account for the odor that could be added by the equipment each player would have in their locker

Ventilation Rates

Once completing the above calculations, 0.5 and 2.5 cfm/sf were chosen as the two cfm for the CFD model shown in Table 9. Although the DD drawings called for 1.75 cfm/sf, HPR Integrated Design decided that this number was a conservative number for the DD submission. After looking at detail at the area served by AHU-7 if was determined that the more realistic number for this space was 1.1 cfm/sf. Table 10 below show a summery that determined this 1.1 cfm/sf. It is also important to note that these spaces where highly dominated by ventilation rates and that the reduction of supply air is still adequate to meet the loads.

DESIGN CRITERIA				
Ventilation	Room CFM/			
rate	Area	Difussers		
0.5	1365	171		
2.5	1365	853		

Table 9: Ventilation Table

Neither 1.1, nor 1.75 cfm/sf were used in this analysis because they were not recommended flow rates for a locker room but rather for an entire AHU's zone.

	CFI	M	Spa	ce	Ventilation			
				Ocupants				
	Area	People	Area	/ Fixtures	Area Base	Fix. Based	Total	Load
Office	0.06	5	1300	20	78	100	178	893
Locker room	2.5	0	1365		3412.5	0	3412.5	1332
Eqipment	0.12	0	300		36	0	36	107
Dry Lockers	0.5	0	250		125	0	125	238
Cooridor	0.06	0	1525		91.5	0	91.5	88
Restrooms	0.5	75	760	19	380	1425	510	1332
Totals	-	-	5500	-	4123	1525	5648	3990
	Sum of the dominating case in each space =					6074		
			Total cfm div	ided by the	total area=	1.1043636		

Table 10: Ventilation Table

The locker room represents the worst case scenario as far as ventilation requirements are concerned. The model was run at each different ventilation rate with the maximum design odor concentrations.

Determining Concentration and Flux

For this experiment HPR will be modeling odor as CO_2 . It is difficult to model odor so instead we have calculated a CO_2 concentration for a given activity level. This concentration will relate to the odor level at that same activity level. This experiment assumed that the occupants of the locker room would be at moderate activity level.

Assumptions:

- 30 breaths per minute (faster than resting)
- 1.1 Liters per breath (deeper than resting)
- Fraction of CO₂ in an exhaled breath is .036
- Moderate activity produces 10 olf

$$30 \left(\frac{breaths}{min}\right) \times 1.1 \left(\frac{liter}{breath}\right) = 33 \frac{L}{min} = .55 L/s$$

$$.55\frac{L}{s} \times .036 = 0.0198\frac{L}{s} = 1.98 E^{-5} m^3/s$$

$$1.98 E^{-5} \times 10^{6} \times 1.2 = 23.76 ppm \frac{kg}{s} per person$$

$$\dot{m} = 1.2 \frac{kg}{m^3} \times \frac{1m}{1000L} \times .55 \frac{l}{s} = 6.6 \times 10^{-4} \, kg/s$$

$$C = \frac{23.76 \, ppm \frac{kg}{s}}{6.6 \times 10^{-4}} = 36,000 \, ppm$$

Calculations for expected steady state temperatures

$$\dot{N} = 1.98 E^{-5} \frac{m^3}{s} \times 60 \times 60 \times 20 \ people = 1.568 \ m^3/h$$

$$\dot{V}_{code} = 289.85 \frac{m^3}{h}$$
 $\dot{V}_{calc} = 1449.1 \frac{m^3}{h}$

Code:
$$289.85 \frac{m^3}{h} = \frac{1.98 E^{-5}}{(C_r - C_s)} \quad C_s = 0 \quad \therefore \quad C_r = 5409.7 \ ppm$$

Calculation:
$$1449.1 \ \frac{m^3}{h} = \frac{1.98 \, E^{-5}}{(C_r - C_s)} \quad C_s = 0 \quad \because \quad C_r = 1082.05 \ ppm$$

These calculations provided us with a concentration to input into the Phoenics software for the concentration generated by each person. In this case I entered a mass flow of 6.6 x 10⁴ and a concentration of 3600 parts per million. It is expected that my room steady state be 5410 ppm when my ventilation is set to code and 1082 ppm when it is set to the calculated value. Also these calculations allow me to relate CO₂ production to Olfs. It can be assumed that 360 ppm of CO₂ is equal to 1 Olf.

The Model

The CFD model was created using Phoenic's graphical user interface. The model consisted of 20 people which each model with four surface temperatures, one on each of the vertical sides. There were four 15 watt lights, four supply grille diffusers, choose from a titus catalog based on CFM and noise criteria, and two exhaust that negatively pressurize the locker room. There is also a transfer grille in the door to provide make up air. The diffuser selected for the code ventilation rate can be seen in Figure 46, while the diffuser selected for the calculated ventilation rate can be seen in Figure 47.

		cfm	78	104	130	156	182	
			NC	1	-	11	17	21
8x6	0.33	0.26	0°	5-9-16	8-12-19	10-15-21	12-16-23	14-18-25
			Throw 22.5°	4-7-13	6-9-15	8-11-16	9-13-18	11-14-19
			(ft) 45°	2-4-7	3-5-8	4-7-9	5-7-10	6-8-11

Figure 46: Diffuser Selection Table

			cfm	642	856
42x8			NC	-	13
24x14	2.33	2.14	0°	16-25-47	22-33-54
			Throw 22.5°	12-19-36	17-26-42
			(ft) 45°	7-11-21	10-15-24

Figure 47: Diffuser Selection Table

I used a hybrid differencing scheme and a K-E turbulence model. The final results where yielded from a calculation of 5,000 iterations. Several calculations where done using 7,000 iterations but no added accuracy was noted.

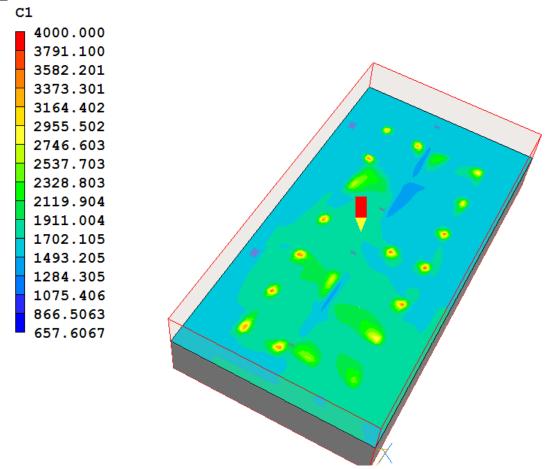


Figure 48: Contamination Distribution for Code Required Ventilation Rate

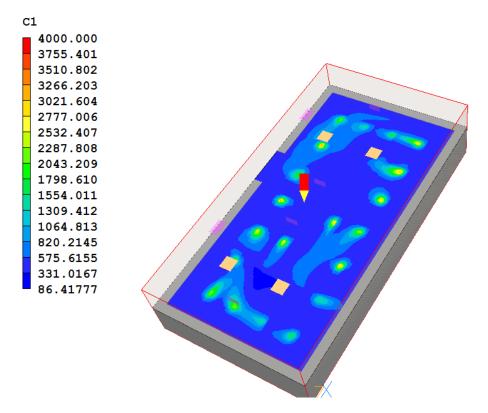
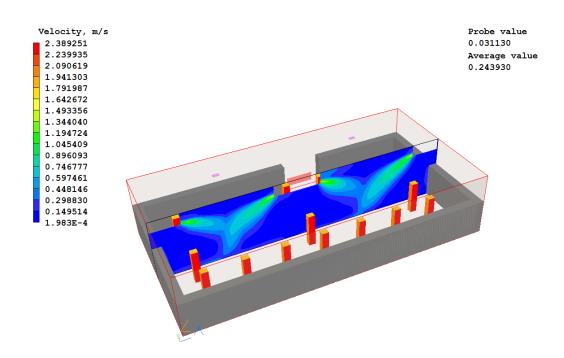



Figure 49: Contamination Distribution for Calculated Ventilation Rate

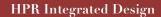
The rest of the results can be seen in Appendix F.

BIM THESIS FINAL REPORT

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

Conclusion

As previously stated, 360 ppm can be related to one olf of odor left in the room. Using the code ventilation rate of 0.5 cfm/sf the space would maintain a level of approximately 4.7 olfs. With the calculated ventilation rate the space reaches a steady state of less than 1.5 olfs. With the code ventilation the steady state of odor is roughly three times higher than that of the calculated value. This is a significant difference so HPR Integrated Design will use the calculated ventilation rate in my design of the men's locker room. This shows that using the code is not always the best design practice and the many times future calculations are required.


Since human odor is difficult to quantify it is also difficult to use a CFD analysis to determine exactly what the level of dissatisfaction would be. The CFD was useful in comparing, on an order of magnitude, how much more odor causing particles would be in the room. Both of the CFD results yielded average room concentrations lower than the hand calculations predicted. This was because the CFD turned out to be a relatively pour example of a well-mixed room.

It is important to note that using the calculated ventilation rate you can achieve odor levels that are similar to those of the outdoor air. Since the outdoor air was model to have a concentration on 350ppm and the steady state on the room was just above 500ppm. When this is compared to the steady state of the code required ventilation rate the 350 and 500 are very close.

Table 10 shows a general break down of the spaces by both their heating/cooling load and ventilation rates. A more detailed break down can be found in Appendix F. From this you can see the majority of the spaces are dominated by the cooling load. To meet the ventilation load and cooling load the 100% outdoor air handler will supply the greater of the ventilation and cooling requirement with a supply temperature of 55°F. In the few cases where the ventilation dominates the cooling load reheat will have to be used. This was determined to use less energy and have a lower first cost than using fan powered terminal units in all the load dominated spaces to eliminate any reheat. It is also mandatory to cool the air to 55°F to meet the dehumidification load on the space.

This study allowed HPR Integrated Design to more accurately determine the amount of supply and exhaust that was needed for the men's and women's locker rooms. With this new information we were able to reduce the size of AHU-7 and AHU-8 from 11,000 CFM to 7,000 CFM a piece. With this come the reduction of fan energy and added cost saving in the initial cost of the two air handling units. This savings is not reflected in the total savings for the Savings Package mainly because the required data to perform such an analysis was not accessible to our construction manager.

BIM THESIS FINAL REPORT

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

Structural Design

Structural design for the savings package was limited in scope due to the architecturally driven nature of the design focus. The structural designer's role through the investigation into the savings package was to facilitate and check the structural system of the facility after major architectural design changes. A small scale structural design and analysis would be completed to allow for architectural changes to be made within the lower arena seating bowl.

In addition to this, HPR Integrated Design proposed changes to the gravity system from the existing steel to a reinforced concrete section only below grade at the main concourse and event levels. Investigation into alternative floor framing systems and gravity column design was completed by the structural designer for collaborative decisions to be made on the project. The following section of this report will overview a view of these investigations and their determined feasibility or benefit to the overall project.

Two-Way Flat Plate Investigation

HPR Integrated Design proposed the redesign of the main concourse floor system from the existing composite slab and steel beam framing system to a two-way post tensioned flat plate system. This proposed change was a result of HPR Integrated Design believing that the controlling dimension in the raising of the Event level would be the effective depth of the above ceiling plenum coordinated with MEP systems. This change was investigated because of the potential decrease in overall floor system thickness of the floor framing system to optimize the ceiling plenum space for MEP coordination.

The structural designer completed the two-way post-tensioned flat plate flooring system per ACI 318-08, Building Code Requirements for Structural Concrete and Commentary. The system was designed to a substantial level of detail before HPR Integrated Design with advice from academic advisors deemed it necessary to abandon the alternative flooring system. Investigating factors of design and construction of a two-way PT system revealed that the alternative floor framing solution would not be beneficial to the project for the following reasons:

- Raising of the Event level was dictated by ADA sightlines and the effective depth of the plenum was more than sufficient using the existing composite framing floor system.
- Two-way PT system was designed for a one bay span in the short direction, which is not an
 efficient design.
- Post tensioning adds considerable cost to the proposed concrete structural system that would negate any anticipated savings in designing the alternative system.
- Bay sizes exceeded typical design criteria for effective design of two-way, post-tensioned flat plate designs.
- Constructability: Post-tensioning requires expertise by a local contractor which State College,
 PA lacks and therefore would require a specialized contractor for installation.
- Curved tendons in the two-way PT design could create issues with the concrete crushing from lateral forces during stressing. Lateral arches are also a consideration that is dangerous in design that results from the curved tendons.

The structural designer and construction manager collaborated and made a final decision that the two-way post-tensioned system was not a beneficial solution for the Penn State Ice Arena project and therefore was not used in this project. The structural designer completed the design for this two-way PT system using hand calculations. Complete hand calculations and layouts for the two-way PT flat plate framing system can be found in Appendix F.

Although not utilized for the project, the two-way, post-tensioned flat plate flooring system would have reduced the overall thickness of the main concourse floor system from the existing 32" depth (7.5" NWC slab and W24 steel girder) to a reduced 10" thickness with the two way slab system.

The two-way, post-tensioned flat plate system was design for bay sizes ranging from 32'-0" x 28'-0" to larger bays of 37'-2" x 28'-0" along the outer concourses of the main concourse level. The application of a two-way, post-tensioned flat plate system is most efficient at bay sizes of about 28' x 28' and up to 32' x 32' at the high extreme. The system was designed to use (7) ½" diameter, 270 ksi high strength mastic-coated tendons. The system was successful in balancing 100% of the target balanced dead loads using 26 tendons in a typical continuous span. Additional design criteria can be seen in Table 11 below.

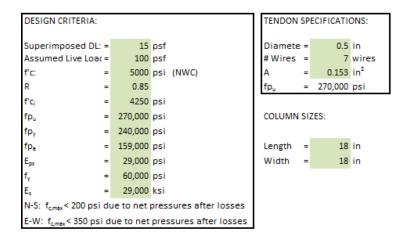


Table 11: Two-Way, Post-Tensioned Flat Plate Slab Design Criteria

For complete hand calculations completed by the structural designer see Appendix F.

Reinforced Concrete Gravity System

HPR Integrated Design proposed the change of all gravity columns below the main concourse level, or below grade, from the existing steel design to a reinforced concrete alternative. The perceived benefits of this change were anticipated savings in cost from an expedited schedule and the ability to start construction earlier in the schedule directly after the concrete foundations were poured. HPR Integrated Design decided that this change was not beneficial to the project and decided to abandon this design before it was started. The feasibility of this system was rejected by HPR Integrated Design for the following reasons:

- The two-way, post-tensioned flat plate flooring system had been determined as not beneficial to the project resulting in constructability issues with reinforced concrete columns.
- Concrete columns were not required for the post-tensioned system for sufficient confinement of proposed arched tendons.
- Constructability concerns with having steel and concrete trades on site trying to complete work around each other.

The design of concrete columns was deemed unnecessary shortly after the determination of the two-way, post-tensioned slab as not feasible for our project.

ADA Alcove Structural Considerations

To meet ADA requirements for sightlines per the 2010 ADA Standard and team goals of the reallocation of seats to maintain the arena's business model, HPR Integrated Design had to develop an alternative ADA seating arrangement. As mentioned earlier, the inner ring of the arena that was design to allow for flexibility of ADA compliant seating anywhere around the interior of the lower bowl was replaced with ADA alcoves that met the 2010 ADA standard for both wheelchair accessible seating and distribution.

In this process, HPR Integrated Design decided to ramp up the 20'-0" long vomitories to enter the arena at a slope of 1:12 per the 2010 ADA standard, section 1010.2. This allowed for the additional 1'-8" dimension to allow for improved sightlines. With this redesign, structural considerations were taken into consideration.

To replace seats lost in the raising of the event level, two additional rows of seating were added above the main concourse level. In addition to the added load of the precast stadia, new steel members had to be design for the raised platforms of the new ADA alcoves. The structural designer performed hand calculations to design the simply supported steel for the new ADA alcoves. Figure 50 shows a section of the new raised ADA alcoves with support steel below the slab.

Figure 50: Ramped-Up Vomitorities at ADA Alcoves

Supporting steel members for the ADA alcoves were set 1' 1 ½" above the main concourse level and therefore could not frame into the structural framing below. The structural designer decided to allow this support steel and the precast stadia above the main concourse level to bear on a 8" thick masonry wall which runs around the interior wall of the main concourse's lower bowl.

An 8 inch ungrouted masonry knee wall was designed per the 2008 Building Code Requirements for Masonry Structures (TMS 402-08/ACI 530-08/ ASCE5-08). In this calculation, lateral loads were neglected and it was assumed that the stadia would concentrically load the wall. The 8" CMU face shell embedded masonry wall was designed as ungrouted using Type S PCL mortar cement mortar. The full calculation can be found in Appendix E.

Foundation Capacity Checks

With the raising of the Event level and reallocation of seating above the main concourse level, the structural designer checked certain deep and shallow foundations for capacity. Only spot checks were completed at this time at specific locations where load was added above the main concourse level. This additional load was transferred through the aforementioned masonry wall to the flooring system and finally to the foundations.

Micropiles were investigated primarily to determine if their boring depth would be sufficient to carry the loads from the large interior columns. Typical micropiles on this project consisted of 10" ø A53 Grade B steel pipes that were drilled between 20' and 30' down into the bedrock layers of the site. The geotechnical report called for the casing of the micropiles to be filled with 5,000 psi concrete that was neglected in the calculations for capacity.

After hand calculations, results showed that the micropiles in all cases were sufficient for capacity with the additional loads from the new seating above the main concourse level. An example of this typical calculation can be found in Appendix F. Strength requirements per calculations showed that the micropiles had capacities of near 120 kips/pile, which is much lower than the 300 kips/pile that was specified in the geotechnical report. This discrepancy is most likely due to the fact that the grouted condition of the piles was not taken into consideration and drastically affected the calculations.

<u>Lighting Design</u>

The lighting design for the event level was narrowed down to a typical office on the southern façade and the men's and women's locker room on the northern side.

The lighting solution in the office area needs to have a high level of user controllability. This is particularly important for the offices adjacent to the exterior. These offices are exposed to an intense amount of morning sun creating glare sources and extremely high illumination levels in these spaces; also due to the direct sun that these spaces see a daylight control system will be designed to decrease the amount of direct sun. The IES 10th edition lighting handbook has illumination criteria outlined in the table below. This criteria is for handwritten office work.

BIM THESIS FINAL REPORT

HPR Integrated Design

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

Horizontal Illuminance 300 lx @ 3' AFF

Vertical Illuminance 75 lx

The lighting solution in the office area needs to meet the IES recommendations outlined in the table below.

Horizontal Illuminance 50 lx @ Floor Vertical Illuminance 50 lx @ locker face

Along with the illumination criteria in the 10th edition lighting handbook this space needs to provide a captivating first impression for recruitment reasons. Providing a space that is impressive follows HPR main theme in giving Penn State more value for every dollar spent.

AHSRAE Standard 90.1 section 9 dictates the allowable power density for these spaces. The office is allowed 1.11 watts per square foot, this gives 158.4 watts total for each office. The locker room is allowed to have a power density of 0.75 watts per square foot, giving a total connected allowable wattage of 1043.5 watts for each locker room.

Typical office

HPR has designed each office to have 2 dimmable LED zones, the first provides the required illumination on the desk/task plane and the second provides accent zone on the wall opposite of the desk.

The task illuminance is achieved using four 25 watt LED downlights Appendix F. These luminaires provide more than the required 300 lx of illumination. This was done for two main reasons. First as the human eye ages the amount of light transmitted through the eye and reaching the retina is reduced substantially. The IES 10th edition handbook outlines that at the age of 65 the amount of light reaching the retina is half of what someone younger than 65 would receive. Therefore the amount of light needed is double. The second reason is due to the fact that one entire wall is composed entire of glass. Having such a large source of daylight may cause the task area to appear dim when and occupant is doing work. Therefore having the option of more light on the task plane would mitigate the contrast between the task surface and the bright exterior.

The second zone of light on the wall is used to give the room balance. Having the first zone centered over the desk area of the room causes scallops on the wall. Therefore providing a wall grazing fixture Appendix F opposite of this wall will give the opportunity for highlighting artwork or other wall mounted objects.

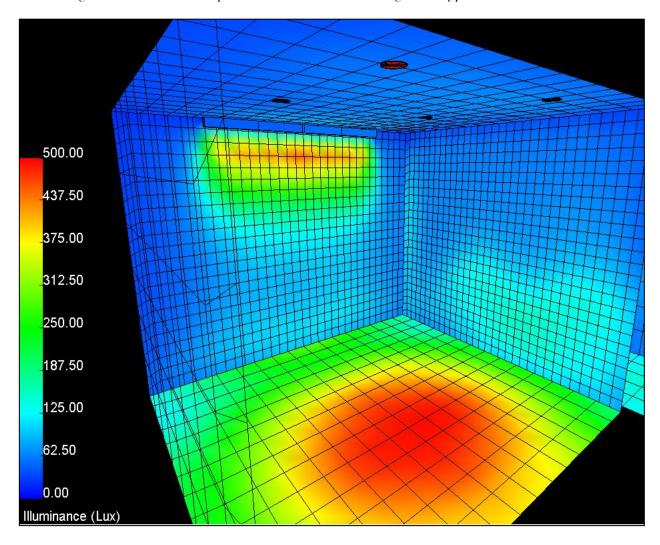


Figure 51 below shows a pseudo colored AGI rendering of the typical office.

Figure 51: Typical Office AGI Pseudo Color Rendering

The numbers below compares the design criteria to the actual design metrics. The connected total power is 137 watts giving a 21 watt savings over the code allowable.

Horizontal Illuminance	300 lx @ 3' AFF	350 lx
Vertical Illuminance	75 lx @3' AFF	83 lx

Locker Room

The lighting solution for the locker room, as stated before, must create a great first impression on perspective recruits, having this criterion for the locker room as well as the fundamental design objective for light to enhance the architectural appeal of a space. The following lighting solution was designed by HPR.

To provide the required vertical illumination at the locker face a recessed LED wall washing fixtures were placed along the perimeter of the locker room. Using a wall washing fixture gave enough light on the locker face while providing the necessary illumination on the floor.

To give an impressive appeal to the room the ceiling alcoves were illuminated with a linear fluorescent cove fixture. Using this fixture gave the ceiling another dimension, almost giving the feeling that it is not a ceiling at all. An AGI pseudo color rendering can be seen in Figure 52 showing this effect.

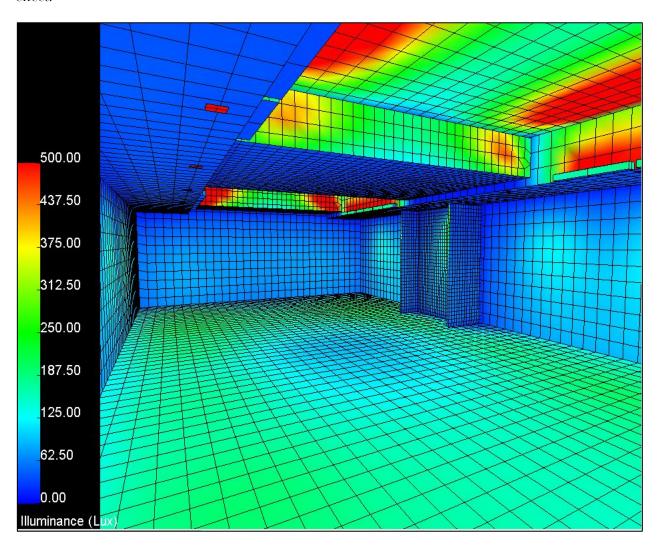
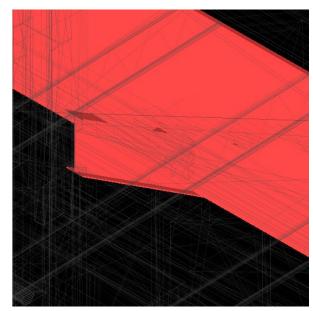


Figure 52: AGI Pseudo Color Rendering of Women's Locker Room

The results of the lighting solution are tabulated below. The total connected load in the locker room is 370 watts creating a savings of 673.25 watts over the allowable.

Horizontal Illuminance	50 lx @ Floor	153 lx
Vertical Illuminance	50 lx @ locker face	128 lx


Clash Detection

Throughout the design of the project, it was important for the team to try and minimize as much rework and redesign as possible. Clash detection was performed in Navisworks bi-weekly to ensure there were no instances where the MEP systems were intersecting with each other or the structure. Each time Clash Detection was to be performed, the current architectural model, MEP models, and structural model, needed to be exported into Navisworks. Clash detections of each model were not only performed one-on-one against one another, but also a clash detection of a model was performed against itself to ensure the designer did not make mistake in their own model. Detections were only performed on the building level or plenum space that was being designed for at the given time.

HPR was able to reduce the amount of rock and soil needing to be excavated, resulting in the reduction of the plenum space between the event level ceiling and the main concourse floor. Clash detections of the plenum space reported that the majority of the clashes were between the mechanical duct and structural beams. As tests were continued being performed, other minor clashes throughout the building included structural members intercepting places where there is concrete. These are minor due to the fact that some small sections of concrete needed to be deleted where a steel beam would be passing through such as a concrete floor. Figure 53 shows examples of detected clashes.

Mechanical Duct & Structural Beam Clash

Precast Stadia & Structural Beam Clash

Figure 53: Clash Detections

Cost and Schedule Implications

HPR Integrated Design designed efficient MEP systems passing through the plenum space between the event level ceiling and main concourse floor that allowed for the reduction of excavation needed by 3 feet 2 inches. By raising the event level, excavation of rock was reduced by 47.7%, while soil was reduced by 8.4%. The new proposed design breakdown is shown below. Note, that the numbers in parentheses reflect the increased savings. These reductions improved the schedule allowing for the start of foundations work to begin 7 workdays sooner.

	<u>Soil</u>	<u>Rock</u>
Total Cost:	\$533,589 (8.3%)	\$268,300 (49.6%)
Total Excavation:	67,061 CY (8.4%)	13,275 CY (47.7%)
Scheduled Work Days:	12 (11.1%)	6 (47.6%)

Raising the event level allowed the structural designer to reduce the size of the foundation walls, event level interior walls, and concrete columns. The construction manager exported the structural and architectural models into Quantity Takeoff, along with the costs and daily output per unit from *Craftsman* to determine these savings. Figure 54 shows an image of the main arena in Quantity Takeoff.

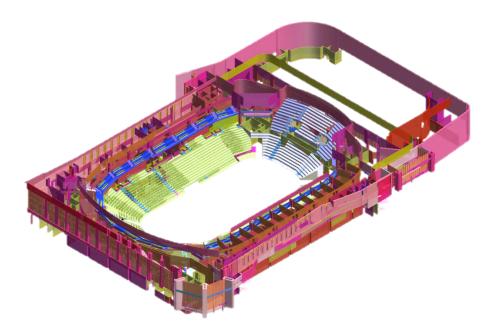


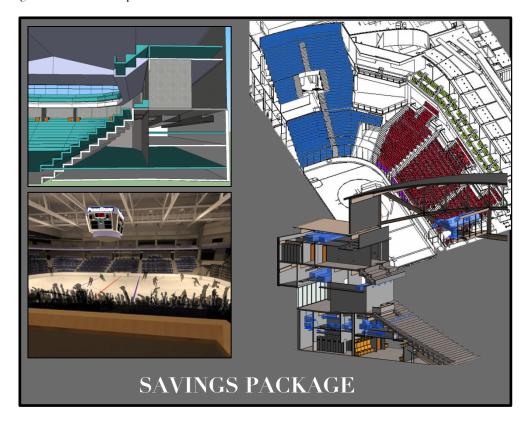
Figure 54: Quantity Take Image of Main Arena

The results from Quantity Takeoff determined that the schedule for the foundations work could be reduced by an additional 8 workdays, a total of 15 workdays, with a total savings of \$627,314 (19.9%). These materials are shown below reflect savings.

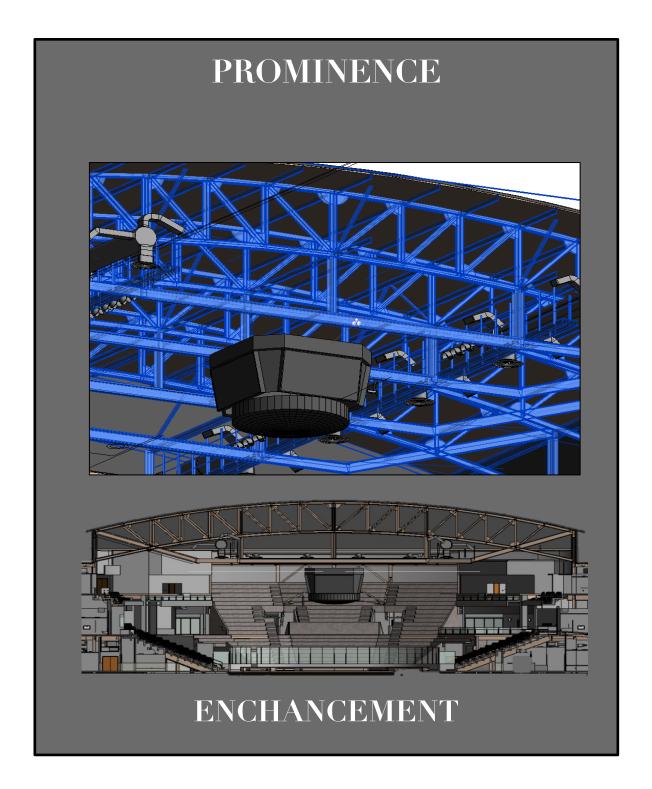
Foundation Walls	\$162,354 (14.7%)
Event Level Interior Walls	\$122,689 (16.0%)
Concrete Columns	\$29.342 (18.5%)

It was important to maintain the architects original intent and for HPR to deliver a high quality product to the owner. For this proposed design to be efficient and for the team to achieve the goals set out, HPR used best design practices to modify or reinforce the current design for the main concourse, the main arena bowl, and the club level. HPR initially focused on the main arena bowl, but then found that the main arena ceiling needed to be raised while attempting to keep the club level ceiling locked in place. However, systems passing through the club level ceiling required that the ceiling be located at the original height. The following changes were made, with increased spending listed first, followed by additional savings.

Increased Spending	
Main Arena Precast Stadia	\$25 217 (22 29)
Main Arena Seats	\$25,317 (22.3%)
Main Concourse Interior Walls	\$16,599 (71.2%)
Club Level Interior Walls	\$79,777 (24.4%)
Glazing (not including East Façade)	\$19,776 (14.8%)
Exterior Walls (not including East Façade)	\$22,813 (24.0%)
Steel Columns	\$137,972 (11.0%)
Steel Beams & Concrete Footings	\$28,189 (4.5%)
d done-ee I ooning	\$29,764 (3.0%)
Addition Savings	
Main Arena Bowl Steps	\$5,493 (33.9%)
Shaft & Column Walls	\$5,679 (6.4%)
Shaft Stairs	\$6,240 (4.3 %)
Remainder Steel	\$45,889 (1.6%)


The architect's current design calls for two types of brick on the façade in various locations, using normal brick and Norman brick. To help save costs and create a uniform look to the building, HPR changed the Norman brick to normal brick. With these additional designs, HPR was able to maintain a total savings of \$330,407 of the overall budget for this design package. These savings will be reallocated in the enhancement packages for this building. All costs incorporate 24.8% overhead and

profit markup. See Appendix F for complete breakdown of differences in cost and the schedule impact for this design package.


Package Summary

The main goal of the Savings Package was to save money in the excavation phase by raising the event level. HPR Intergraded Design also strove to maintain code compliance. The secondary goal was to maintain the business model that Penn State had created. We wanted to remain within 5% of both total seats and on total profit from a sold out arena.

Through all the engineering shown throughout the previous sections HPR Integrated design was able to deliver on all of our goals. The total savings were \$330,407 caused by raising the event level up 3 feet 2 inches. We also added 2.7% of the original seats and 2.37% of game day profit, both within our allotted goal. We also reduced the construction time by 15 workdays. All of this was done while maintaining the costumer experience.

ENHANCEMENT PACKAGE: Prominence

Opportunity Statement

Through the investigation into the Penn State Ice Arena, HPR Integrated Design discovered that the reasoning for the utilitarian roof design was due to the expensive excavation of bedrock. The Pennsylvania State University is proud of its rich sports tradition and that is reflected in the state-of-the-art facilities located in the northeast corner of campus. HPR Integrated Design also believed that the Penn State Ice Arena is located at a critical site on campus that acts as a transition from the academic core of campus to its athletic sector.

The opportunity to add prominence to the facility by creating a more recognizable roof profile was a blend of savings from raising the event level, the assumption that the roof had not been fully designed where design was a thesis objective and the fact that HPR Integrated Design feels that this facility should rival adjacent sporting facilities on campus. Other prominent athletic facilities neighbor the Penn State Ice Arena with the Bryce Jordan Center, pictured in Figure 57, located directly across the street. The Multi-Sport Complex also is located within view of the arena and all athletic facilities are overshadowed by Beaver Stadium, the 110,000 seat football stadium that is iconic for the University. These facilities are pictured below are shown in the Figures below.

Figure 55: Bryce Jordan Center, Penn State

Figure 56: Multi-Sport Complex, Penn State

Figure 57: Beaver Stadium, Penn State

HPR Integrated Design proposed using the cost savings from the Savings package and reallocating the money back into the facility through a re-design of the high roof framing system, specifically the long span trusses for a more prominent roof profile. With cost savings from the savings

package totaling more than \$330,000, HPR Integrated Design could upgrade the utilitarian roof profile to a more dominant look that rivals these adjacent structures.

After seizing the opportunity to enhance the roof profile, HPR Integrated Design began to develop a goal and strategy for measures of success in this design focus. Through collaboration and indepth conversation about the direction of this effort, the team decided that the goal of this design focus should be to give the owner the building they first were presented in the feasibility studies, shown in Figure 58 below.

Figure 58: 2005 Feasibility Study Drawings

The renderings convey an original design scheme that included an arched roof profile that revealed a large, open interior volume in the main competition arena. From the exterior, the renderings show that the high roof systems are clear in expressing where the main function of the facility occurs, an architectural consideration that had to be relaxed due to the incurred cost of bedrock removal. The design team understood that these feasibility studies were completed without a baseline budget and purely as an architectural exercise. With that stated, the team decided that the new roof profile should return the high roof framing systems to the prominent design that was schematically designed.

With the main direction of the prominence package set, HPR Integrated Design turned towards secondary goals that were considered stepping stones to the ultimate design goal set forward. These secondary goals included:

- Creating a clean interior and exterior high roof framing system with seamless integration of mechanical systems, catwalks and high roof lighting systems
- Provide optimum, uniform NCAA compliant lighting design that enhances the visitors
 experience whether they are watching the game live or via broadcast.
- Track the high roof framing costs and schedule impacts in real-time along with keep constructability and sequencing at the forefront of the design process.

Keeping these goals in mind HPR Integrated Design moved forward into design strategy.

Shape and Dimensions

Selecting the roof profile was a continuously evolving process for HPR Integrated Design. Initial design concepts included mimicking the Bryce Jordan Center's geometrically intricate saddle like shape. The schematic shape of the roof, shown in Figure 59, quickly lost its momentum as constructability and cost analyses were performed on the design.

To obtain this geometry, the structural designer would need to design extremely deep, heavy trusses that would be challenging during construction and not economic. Another option was to vary the bottom of steel dimension and raise and lower the long span trusses to obtain the high and low points on the roof system. HPR Integrated Design decided that this would not allow the team to match their team design goal of a clean roof design as MEP systems would need to raise and lower creating a cluttered ceiling aesthetic. Ultimately, this design concept was determined not feasible for the type of structural system that was being designed for the project.

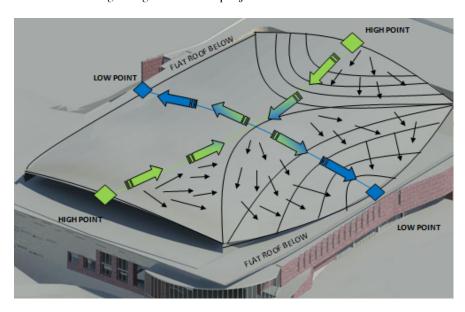


Figure 59: Schematic "Saddle" Roof Design Concept

HPR Integrated Design turned to a more conventional design, both consistent with the feasibility studies and without large constructability concerns. The collaborative design decision, led by the structural designer, is to move forward with an arched roof profile design that will be raised in elevation to allow for the main competition arena to be prominent and easily distinguishable as the most important space in the arena. This design strategy also helped pull the idea of functionality through the rest of the façade that was being designed concurrently.

Additional design decisions were made which included raising the overall elevation of the high roof framing, maintain the existing high roof dimensions, both the 196'-0" span of the trusses and the 240'-4" width through the building while also keeping all trusses at the same dimensions/elevations for constructability and the opportunity for prefabrication savings during construction. At this point, the

mechanical designer was able to perform analysis on the amount of volume that could be added without major resizing of the existing two 45,000 CFM air handlers that were supplying the space.

Early Design Strategy

The integrated project delivery (IPD) method allowed HPR Integrated Design to get early input from the MEP designers and the construction manager which allowed the structural designer to complete a more efficient design not just for the trusses but for the high roof systems as a whole. After the mechanical designer had performed a volumetric expansion study for the arena, the team began to collaboratively determine the new shape of the roof. Analysis showed that the volume of the arena could be increased significantly without resizing the air handlers.

The lead/lag nature of this thesis was highlighted during the following weeks. A workflow (or lead/lag) diagram for the early design process is shown in Figure 60.

Figure 60: Partial Workflow Diagram for the Prominence Package

The mechanical designer and lighting/electrical designers were given free reign to determine the optimum location for their systems to enhance the overall performance of the arena. Preliminary duct sizing and catwalk locations were chosen at this time and the design criteria were given to the structural designer. This information allowed the structural designer to have all systems information up front, which is not typical in the traditional design process. The additional information did create a more difficult design process since the structural designer was not only thinking of his system but the project as a whole. Benefits to this process allowed for minimal redesign later in the thesis as major considerations had already been observed.

The construction manager was brought into the design process shortly after the MEP designers had completed their schematic system designs. As shown in Figure 60 above, the construction manager worked collaboratively with the structural designer throughout the remainder of the high framing systems design to ensure a constructible, cost effective design.

Case studies

Case studies were selected by HPR Integrated Design to investigate and learn more about high roof system designs based on similar arenas. Two key variables were considered during the selection of case studies: the span of the trusses and the seating capacity of the arena. Although many case studies were studied for preliminary considerations, HPR Integrated Design ultimately selected two case studies that were also studied by the actual design team during preliminary design of the arena.

The Compton Family Ice Arena at the University of Notre Dame and the Agganis Arena from Boston University were selected by the structural designer for heavy consideration into the design of the new Penn State Ice Arena long span trusses. HPR Integrated Design also chose to recognize the preliminary design for the actual Penn State Ice Arena project as a third case study. Below is a quick summary of each case study with key information that was beneficial to the HPR design team during the research phase of this focus.

The Compton Family Ice Arena

University of Notre Dame Notre Dame, Indiana

Figure 61: Compton Family Ice Arena
University of Notre Dame

The Compton Family Ice Arena is a state of the art, two rink facility located in the heart of campus for the University of Notre Dame. The 5,022 seat arena was opened in October of 2011 and was closely studied for the business model and design of the Penn State Ice Arena. The high roof system is designed consistently with the Penn State Ice Arena with simply supported long span trusses which span 156'-0". The barrel truss shape of the long span truss, shown in Figure 63, is 14'-9 ¼" tall at its mid-span and consists of primarily W14 chords and W8 web members.

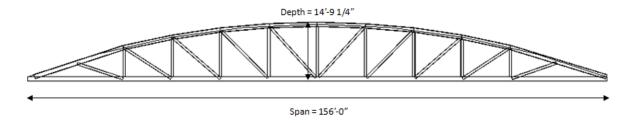


Figure 62: Long Span Truss Profile - Compton Family Ice Arena

The Compton Family Ice Arena was opened for its inaugural season in the fall of 2011 and the construction cost of the facility was roughly \$50,000,000. The arena also served as a case study for the business model of a similar arena. The arena is laid out very similarly to the Penn State Ice Arena with a large lower bowl for general admission seating with a mezzanine level with additional seating and suites. The Compton Family Ice Arena served as a case study for a slightly smaller arena in both seating capacity and long span truss.

Agganis Arena

Boston University
Boston, Massachusetts

Figure 63: Agganis Arena Boston University

The Agganis Arenas a slightly older, yet still state-of-the-art, multi-purpose arena located on the campus of Boston University in Boston, Massachusetts. The 7,200 seat arena was opened in 2005 and boasts not only a large multi-purpose arena but also is part of the John Hancock Student Village Complex that has an Olympic size natatorium and multiple basketball courts. The arena is not exclusively used for ice hockey like the Compton Family Ice Arena and has been the host of many large concerts and events for the University. The entire complex, including the arena, culminated in a construction cost of \$225,000,000.

The high roof framing system consists of 13 different trusses that hold up the domed roof profile with a diaphragm ring around the base of the high roof system. Long span trusses run both directions with the larger trusses spanning 204'-0", slightly larger than the 196'-0" span that the Penn

State Ice Arena boasts. Member sizes for the long span trusses include W14 wide flanges for the chords and W12's for the web members. The truss is 24'-0" deep. These large long span trusses can be seen in Figure 64 below.

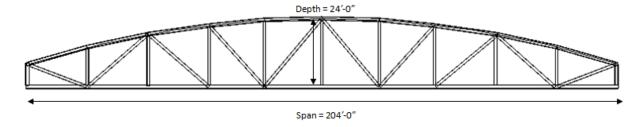


Figure 64: Long Span Truss Profile - Agganis Arena

The high roof framing system is much more complex and is designed with a rigging grid much more extensive than both the existing design for the Penn State Ice Arena and the Compton Family Ice Arena. This arena was also studied by Penn State University in its programming portion of the design process and was visited by the University's high level officials before design started. The Agganis Arena was utilized as a larger case study both in terms of seating capacity and overall truss span length.

Penn State Ice Arena Existing Design

The Pennsylvania State University
State College, Pennsylvania

Figure 65: Penn State Ice Arena Existing Design

HPR Integrated Design made a collaborative decision to recognize the high roof framing system for the existing Penn State Ice Arena. This decision was made for two reasons: to obtain a baseline value for the high roof framing system for cost control and to prove the utilitarian design and cost of the roof due to the excessive rock excavation.

The existing high roof framing system consisted of eight (8 simply supported long span trusses spanning 196'-0" with bridging trusses running perpendicular for stability in the opposite direction. The existing trusses are 10'-0" deep at their supports and gently slope to 12'-6" at midspan. Top and

bottom chords consist of W14 wide flange members with double angles acting as the web members. Figure 66 below shows the existing truss design for the Penn State Ice Arena.

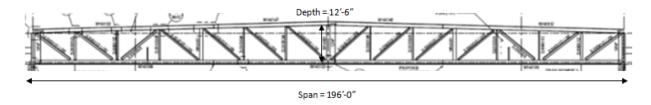


Figure 66: Long Span Truss - Penn State Ice Arena

HPR Integrated Design felt that although the assignment brief for this thesis project was to design the facility without a roof, it was important, for cost comparison and schedule, to observe the existing truss design and erection sequence. HPR felt that the structural drawings level of detail was past the design document stage when the project contract documents were obtained.

Regulations

HPR Integrated Design investigated NCAA regulations for minimum clear dimensions for ice hockey regulations and found that the American Collegiate Hockey Association (ACHA) did not have any minimum set as official requirements. The team turned to best design practices of architectural design of typical arenas and information gained from research into case studies listed above. Research revealed that a minimum clear dimension of 50' to 60' was ideal for NCAA hockey regulations.

The existing Penn State Ice Arena had a 50'-0" clear dimension between the ice and bottom of steel and the Agganis Arena designed for a 54'-6" bottom of steel dimension. HPR Integrated Design decided that part of the design criteria to maintain excellence in design would be to observe this design consideration and utilize this knowledge in the design of the new high roof framing system.

<u>Integration of Mechanical Electrical and Structural Systems</u>

Structural System

Design Decisions & Key Assumptions:

The structural designer's most critical challenge throughout this thesis was to design long span trusses that created a clean high roof design and gave the new arena a more prominent look from both the interior and exterior of the facility. Key decisions were made as a design team before the design of these trusses could begin. These decisions included locking the architectural layout of the building and also deciding to not change the spacing of the long span trusses which ranged from 32'-0" to nearly 40' apart.

HPR Integrated Design also decided that the span of the arena would not be changed as the current architectural layout seemed to be efficient for the function of the spaces within the building. A major part of the team concept was to maintain the architect's intent throughout the design/redesign process.

Investigation into the preliminary design of the Penn State Ice Arena's roof led to more design considerations that were kept in mind throughout the design process. The existing section of the building, as seen in Figure 67, shows two key dimensions that were continuously checked and considered in the redesign of these trusses: the bottom of steel dimension and overall building height.

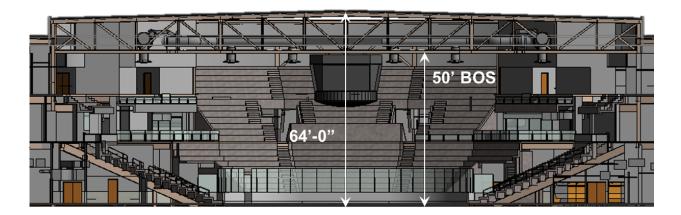


Figure 67: Existing Transverse Section

Through research and professional practioner's input, it was determined that a 50' to 55' clear dimension was ideal for NCAA hockey gameplay regulations and was determined by HPR as a best design practice which must be maintained. Additionally, the existing building was 64' tall which was mostly because of the relatively flat 12'-6" deep existing long span steel joists. To add prominence to this facility, HPR Integrated Design decided that this dimension must be increased to add volume to the arena and give the space a larger, more impressive feeling like that depicted in the feasibility studies conducted in 2005.

The process of design for the long span trusses was a collaborative, thesis long effort that resulted in multiple design iterations to optimize both the dimensions and efficiency of the system with the high framing MEP systems. All disciplines had critical input into engineering decisions throughout the process in terms of MEP system coordination and constructability considerations.

The mechanical and lighting/electrical designer had early input into their ideal system layout locations and gave the structural designer preliminary sizes for consideration. The mechanical designer provided information for schematic supply duct sizes and the lighting/electrical designer provided ideal locations for catwalks that would also be utilized to house the arena's main competition and broadcasting lighting system.

Tied Arch Truss Geometry

The trusses were schematically sized for overall depth using two different design considerations: the typical length to depth ratio equal to 12 for most long span trusses and a limitation of 14'-8" deep pieces which is driven by the width of a flat bed, which is standard for normal transportation.

Research into tied arch truss design quickly revealed that this type of system was considered to be a highly efficient system. It was also determined that the deeper the geometry of the truss, the more cost effective. Therefore, the structural designer decided to create a 14'-0" deep geometry that would maximize the efficiency of the truss members and also allow for a larger volume in the arena, consistent with the team approach for a new prominent system design.

Panel spacing for the upper chord of the truss was chosen based on the design of the acoustical steel decking for the arena roof system. Spacing for the verticals in the top chord were chosen to be 12'-0" apart as this spacing allowed for the roof system to be design with 3N18 acoustical roof deck.

Figure 68 below shows the typical architectural detail for the roof assembly. The acoustical decking was designed based on loads in Table xx. The flat roof snow load was included in the live load calculation to be conservative and also the minimum code required roof live load per ASCE 7-10 4.8.2. The 3N acoustical decking from the Vulcraft steel deck catalog is commonly used in structures like auditoriums, theatres and arenas were sound control is desirable. The deck is filled with batt insulation and can absorb up to 70% of sound that hits the deck. The architectural intent and Owner's desire is for the sound to be trapped in the arena creating a boisterous atmosphere for gameplay consistent with a "home ice advantage." The selection of the roof deck can be found in Appendix G.

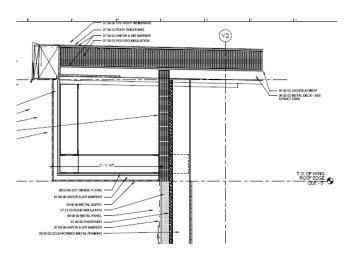


Figure 68: Partial Detail H1/A4-14

Element	Туре	Load (PSF)	
TPO Roof Membrane	Dead	1	
3/4" Plywood Sheathing	Dead	3	
6" Rigid Insulation	Dead	9	
Vapor & Air Barrier	Dead	0	
3/4" Plywood Sheathing	Dead	3	
3N18 Roof Deck	Dead	4	
Superimposed DL	Dead	15	
TOTAL DEAD		35	PSF
Snow	Live	36	
Roof Live	Live	12*	
*Minimum Roof Live Load	d per ASCE	7-10 4.8.2	
TOTAL LIVE		48	PSF
TOTAL LOAD		83	PSF

Table 12: Roof Loads for Acoustical Deck Design

The 3N18 acoustical roof deck was assumed to be a three plus span condition and at 12'-0" spacing the deck can carry total load (85 psf > 83 psf) and live load (96 psf>48 psf) which is designed for deflection criterion of span/240 which was conservative.

Diagonals web member geometry was chosen so that all web members would be in tension to allow for more efficient use of the material and eliminate buckling considerations. Wide flanges were selected instead of double angles due to cost considerations.

HPR Integrated Design decided on a curved roof profile to create a stronger, more prominent look along with the recognition of this space as the main functional space within the facility. The arched profile of the top chord would create induced lateral thrust forces that would be handled by diagonal ties. The top chord with diagonal web members would act as a large, deep member in compression and the diagonal and horizontal ties would need to carry the majority of the tension forces in the geometry. Figure 69 shows the final geometry of the tied arch long span truss.

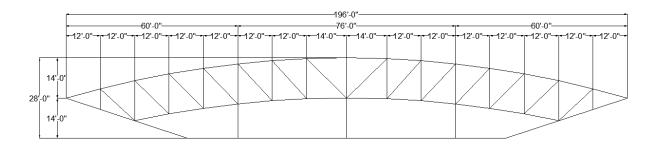


Figure 69: Long Span Truss Geometry

Long Span Truss Analysis & Design

After the geometry of the truss had been refined to a point where design could commence, the truss was placed into the structural design program SAP 2000 for frame analysis. The frame analysis shown in figure xx below was done for the worst case truss scenario, at the ends of the high roof systems and locations where the scoreboard would be hung from the trusses along column lines X8 and X9.

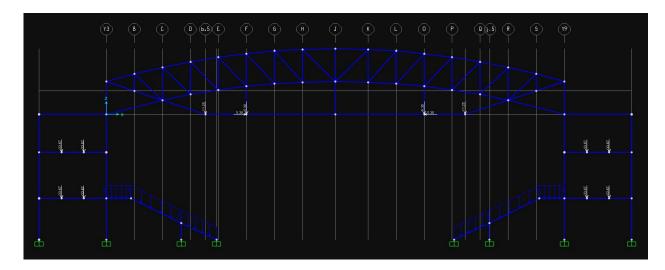


Figure 70: SAP 2000 Frame Analysis

Table 13 shows the gravity loads used in this frame analysis followed by the wind loads derived from ASCE 7-10 Chapter 26 Method 2 Wind Analysis for High-Rise Buildings in Table 14. Additional wind load analysis can be found in Appendix G.

	Dead & Live	Loads Frame Analysis	
Load	Level	Space	Load (psf)
Dead	Main Concourse	Corridor/Rackers	90
Live	Main Concourse	Corridor/Rackers	100
Dead	Club	Corridor	90
Live	Club	Corridor	100
Dead	Low Roof	Roof	40
Live	Low Roof	Roof	12
Dead	High Roof	Roof	40
Live	Low Roof	Roof	12
Dead	All	Façade Brick	58

Table 13: Dead & Live Loads - Frame Analysis

Wind	lward Wa	ll Pressure	es
		P (psf	with
Surface	z (ft)	GCpi	-GCpi
	0-15	12.82	26.50
	20	13.98	27.65
_	25	14.90	28.58
Windward Wall	30	15.83	29.50
ard	40	17.22	30.89
ld w.	50	18.37	32.05
————————————————————————————————————	60	19.30	32.97
	70	20.32	33.99
	80	21.09	34.77
	81.52	21.20	34.88

Table 14: Windward Wall Wind Pressures

Wind Pressures - Re	maining Wa	lls & Roof	
Surface	z(ft)	P (psf) with
Surface	Z(It)	Gepi	-GCpi
Side Wall	All	-31.37	-17.7
Leeward - Normal to L Face	All	-24.36	-10.69
Leeward - Normal to B Face	All	-21.36	-7.68
Roof - Normal to L Face	0-40.76	-38.38	-24.71
	81.52	-38.38	-24.71
	163.04	-24.36	-10.69
	252	-17.35	-3.68
Roof Normal to B Face	0-40.76	-38.38	-24.71
	81.52	-38.38	-24.71
	163.04	-24.36	-10.69
	252	-17.35	-3.68

Table 15: Side Wall, Leeward Wall, & Roof Wind Pressures

Snow loads were derived following the procedure outlined in Chapter 7 of ASCE 7-10 and using information from S0-1 of the contract drawings for exceptions for ground snow load values in State College. Based on factors from the tables in Chapter 7, the flat roof snow load was taken as 36 psf. Due to the high roof and low roof being at different elevations, drift was considered at locations where the high roof and low roof met. A summary of the snow and wind drift calculations can be found in Appendix G.

Additionally, rigging loads were considered in the loading of this typical frame. From research on case studies that were similar in size and arena function, the trusses were determined to be able to handle 30,000 lbs per truss with three rigging points at each panel point on the lower horizontal tie. Trusses along column lines X8 and X9 were designed to be able to hold the 30,000 lb. central hanging scoreboard using a four point rigging layout with 15,000 lbs capacity for each truss.

Some special rigging considerations were also considered based on research on the Agganis Arena in Boston. The horizontal tie member was designed to hold a typical end stage curtain rigging system which consists of a single, electrically operated 80' end stage rear curtain masking batten with the capacity to lift and sustain 2,000 lbs. Additionally, for events that want to cover the mezzanine level during smaller performances, the trusses were designed to hold a flexible/portable truss and motor system that consist of a box truss with 11 rigstar, 2,000 lb motors with a control system for velour curtains.

The frame analysis included the moment frames that run east-west on the building at all three levels. Worst case wind loads were considered in the east-west direction where the building slopes down and is exposed down to the event level. The frame analysis was run and the output from the program revealed that load combination 1.2D + 1.6S + 0.5W was the controlling load combination from

Chapter 2 of ASCE 7-10. The structural designer used the axial loads, major axis (bending 3-3) moments and maximum deflection values from the respective load case to design the members individually by hand. Figure 71 shows a screenshot of the long span truss in the frame analysis within the SAP2000 analytical program with axial loads displayed.

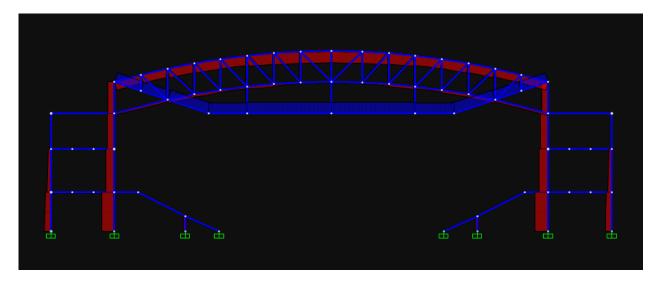


Figure 71: Axial Load Output - SAP2000 Frame Analysis

From the data output from the analytical software, the structural designer performed hand calculations to design the individual members within the truss. All members were designed per the AISC Steel Manual 13th edition as either pure compression members (per Table 4-1), pure tension members (per Table 5-1) or as combined loading members per Table 6-1. All values extracted from SAP2000 output were accumulated into a spreadsheet as partially shown due to size in Table 16. Complete hand calculation spreadsheets for the member sizing of the long truss steel members can be found in Appendix G.

		SECTION F	ROPERTIES					LOADI	NG		co	MPRESSI	ON		TEN	SION	BEI	NDING	
Member	Member Location	Member Size	K Value	Length (ft)	I _x (in ⁴)	E (ksi)	Controlling LC	Load (k)	Tension/Compression?	P _u (k)	KL	r _y	KL/r _y	φP _n (k)	P _u (k)	φP _n (k)	M _u (ft-k)	Neglected?	Δ (in)
1	Top Chord	W14x43	1.00	12.438	428	29000	1.2D+1.6S+0.5W	463.03	Compression	463.03	12.438	2.46	5.0561	562	0	567	42.24	Yes	0.027
2	Top Chord	W14x43	1.00	12.328	428	29000	1.2D+1.6S+0.5W	468.03	Compression	468.03	12.328	2.46	5.01138	562	0	567	29.14	Yes	0.031
3	Top Chord	W14x43	1.00	12.234	428	29000	1.2D+1.6S+0.5W	509.06	Compression	509.06	12.234	2.46	4.97317	562	0	567	16.91	Yes	0.010
4	Top Chord	W14x43	1.00	12.156	428	29000	1.2D+1.6S+0.5W	542.08	Compression	542.08	12.156	2.46	4.94146	562	0	567	10.3	Yes	0.022
5	Top Chord	W14x43	1.00	12.094	428	29000	1.2D+1.6S+0.5W	550.84	Compression	550.84	12.094	2.46	4.91626	562	0	567	4.77	Yes	0.009
6	Top Chord	W14x53	1.00	12.052	541	29000	1.2D+1.6S+0.5W	600.33	Compression	600.33	12.052	2.46	4.89919	663	0	702	19.52	Yes	0.014
7	Top Chord	W14x53	1.00	12.021	541	29000	1.2D+1.6S+0.5W	643.83	Compression	643.83	12.021	2.46	4.88659	663	0	702	13.91	Yes	0.021
8	Top Chord	W14x53	1.00	14.000	541	29000	1.2D+1.6S+0.5W	664.58	Compression	664.58	14.000	2.46	5.69106	663	0	702	40.35	Yes	0.063
9	Top Chord	W14x53	1.00	14.000	541	29000	1.2D+1.6S+0.5W	664.58	Compression	664.58	14.000	2.46	5.69106	663	0	702	40.35	Yes	0.063
10	Top Chord	W14x53	1.00	12.021	541	29000	1.2D+1.6S+0.5W	643.18	Compression	643.18	12.021	2.46	4.88659	663	0	702	14	Yes	0.021
11	Top Chord	W14x53	1.00	12.052	541	29000	1.2D+1.6S+0.5W	599.06	Compression	599.06	12.052	2.46	4.89919	663	0	702	19.51	Yes	0.014
12	Top Chord	W14x43	1.00	12.094	428	29000	1.2D+1.6S+0.5W	549.01	Compression	549.01	12.094	2.46	4.91626	562	0	567	4.67	Yes	0.009
13	Top Chord	W14x43	1.00	12.156	428	29000	1.2D+1.6S+0.5W	539.62	Compression	539.62	12.156	2.46	4.94146	562	0	567	10.29	Yes	0.022
14	Top Chord	W14x43	1.00	12.234	428	29000	1.2D+1.6S+0.5W	505.89	Compression	505.89	12.234	2.46	4.97317	562	0	567	16.91	Yes	0.009

Table 16: Partial Hand Calculations for Member Sizing

Per the definition of a combined loading member, every truss member has some axial force & moment that classifies them as combined loading members. For simplicity, the structural designer neglected the bending moments that were calculated to be less than 10% of the axial force as it would

not affect the design of the member. These members were considered to only carry pure axial tension or compression.

The structural designer did check the diagonal and horizontal ties as combined loading members since their moments exceeded their axial forces. Table 17 below shows a sample hand calculation to check the capacity of the horizontal tie.

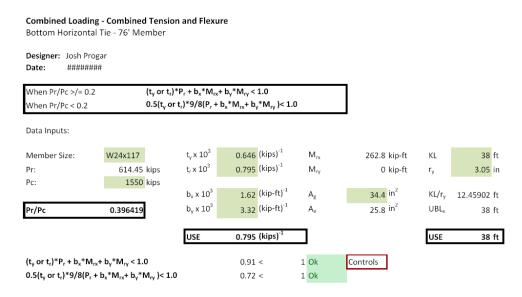


Table 17: Sample Hand Calculations - Combined Loading Members

Deflections criterion was also checked for every member in the truss. Deflections did not control the design of any of the members. The structural designer deflection criterion of span/180 for both live load and total load deflections per the IBC 2009 Table 1604.3. The deflection criterion exceeds code for total load and was used to prevent ponding issues on the roof.

After the truss members were designed by hand, member sizes were entered back into the SAP2000 structural program and check using the programs "Steel Design/Check of the Structure" application. Figure 72 shows a screenshot of a SAP2000 member check along with a legend.

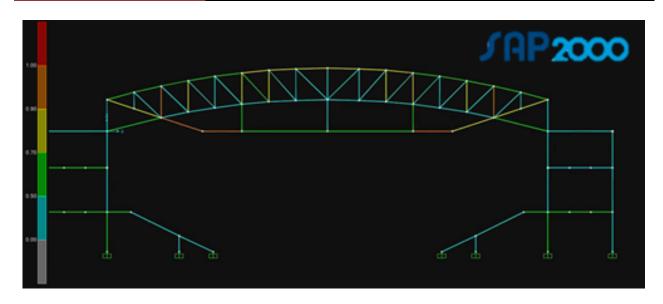


Figure 72: SAP2000 Member Check & Legend

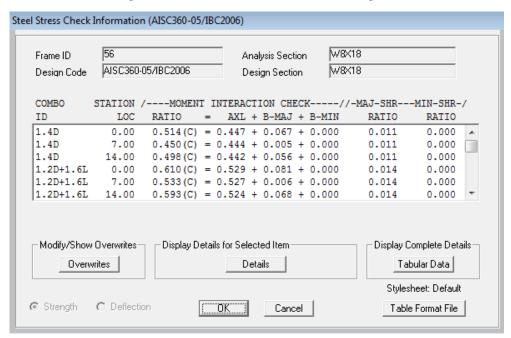


Figure 73: SAP2000 Steel Check per AISC360-05/IBC2006

In this check, combined loading is taken into account, which allowed the structural designer to confirm that all members worked per hand calculations. Upon completion of the SAP2000 checks, the structural designer modeled the long span trusses and the rest of the structural system in SAP2000 for seismic analysis. Seismic lateral forces did not control the design of the lateral system, which is a seismic category A building.

BIM THESIS FINAL REPORT

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

Seismic Considerations & Analysis

Seismic design considerations were considered but no focused on during the duration of this thesis. The derivation of seismic design loads and analysis for code compliance was completed for code compliance using ASCE 7-10, Chapters 11 & 12 using the Equivalent Lateral Force method.

The structural designer obtained information from the USGS "Seismic Design Maps" information for site specific calculated spectral response accelerations for short and one second responses. These reports derive values and other seismic design criteria per the 2010 Minimum Design Loads for Buildings and Other Structures, ASCE 7-10 and the 2012 IBC. A detailed report of the USGS seismic design values can be found in Appendix G.

Following the Equivalent Lateral Force procedure in Chapter 11 of ASCE 7-10, the seismic loads were calculated. The approximate fundamental period for the structure was estimated using section 12.8.2.1 and the "All other Structural Systems" category. Additionally, the structural designer calculated the weight of the building at each level to obtain a base shear of 250.30 kips. The base shear for the building had not been included in the structural drawings so it was assumed to be within reason for this project. A summary of the seismic design criteria for the Penn State Ice Arena can be found in Table 18 on the following page.

Seismic Design Cr	iteria p	oer ASCE 7-10	
Seismic Design Criteria			ASCE 7-10 Provision
Soil Classification		С	Table 20.3-1
Occupancy		III	Table 1-1
Importance Factor	I _e	1.25	Table 1.5-2
Structural System		Ordinary Steel Moments Frames	Table 12.2-1
Spectral Response Acceleration, Short	S _s	0.116	USGS
Spectral Response Accelerations, 1 s	S ₁	0.05	USGS
Site Coefficient	Fa	1.2	Table 11.4-1
Site Coefficient	F _v	1.7	Table 11.4-2
MCE Spectral Response Acceleration, Short	S _{MS}	0.1392	Eq. 11.4-1
MCE Spectral Response Acceleration, 1 S	S _{M1}	0.085	Eq. 11.4-2
Design Spectral Acceleration, Short	S _{DS}	0.093	Eq. 11.4-3
Design Spectral Acceleration, 1 s	S _{D1}	0.057	Eq. 11.4-4
Seismic Design Category	S _{DC}	А	Table 11.6-1
Response Modification Coefficient	R	8	Table 12.2-1
Deflection Amplification Factor	Cd	3	Table 12.2-1
Approximate Period Parameter	Ct	0.028	Table 12.8-2
Building Height	h _n	49.87	Above Grade
Approximate Period Parameter	Х	0.8	Table 12.8-2
Calculated Period Upper Limit Coefficient	C_{u}	1.7	Table 12.8-1
Approximate Fundamental Period	Ta	0.64	Eq. 12.8-7
Fundamental Period	Т	1.09	Sec 12.8.2
Long Period Transition Period	T _L	6	Fig. 22-15
Seismic Response Coefficient	Cs	0.0217	Eq. 12.8-2
Structural Period Exponent	k	1.29	Sec. 12.8.3
Redundancy Factor	р	1	Sec. 12.3.4.1
Building Weight	W	11539	
Base Shear	V	250.30	

Table 18: Seismic Design Criterion per ASCE 7-10

The structural designer derived story equivalent lateral loads as shown in Table 19 using the Equivalent Lateral Force procedure. At this point, computer modeling of the entire structure was completed using SAP 2000.

X-Direction L	oading							
i	h	h	w	w*h ^k	C _{vx}	fı	V _I	M
	ft	ft	kips			kips	kips	ft-k
HIGH ROOF	14	47.86	1773	265628	0.500	125	0	5994
LOW ROOF	16.21	33.86	1001	95803	0.180	45	125	1529
CLUB	19.66	17.65	4117	169479	0.319	80	170	1410
CONCOURSE	17.65	0	4648	0	0.000	0	250	0
		Σ	11539	530909		250		2940

Table 19: X-Direction Seismic Loading - Equivalent Lateral Force Method

For simplicity, since the Penn State Ice Arena falls into Seismic Design Category A and a detailed lateral analysis was not included in the accepted proposal for this thesis, several key assumptions were made. The computer model did include both gravity and lateral members, which was done primarily to complete the modeling process for additional uses. This modeling assumption should have make no significant changes to the outcome of the lateral load analysis. The model did not include floor diaphragms or a sloped diaphragm for the club and main concourse level sloped stadia seating.

The modeling process allowed the structural engineer to use knowledge gained in AE 597A, a MAE required course, to allow for more accurate results. Moments were released in all members where moment connections were not called for in design. It is important to note, for a quick check of the lateral system, center of mass and center of rigidity were quickly calculated by hand since the SAP2000 analytical program does not calculate these values automatically. The simplified computer model of the Penn State Ice Arena can be found below in Figure 74.

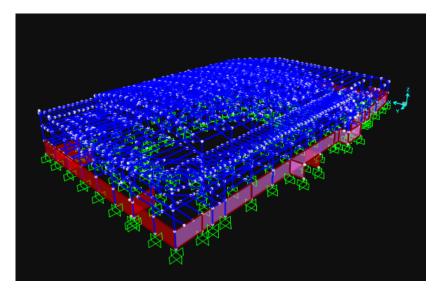


Figure 74: SAP2000 Simplified Lateral Analytical Model

Since the Penn State Ice Arena falls under Seismic Design Category A, torsional irregularities are not investigated as a part of this report. Using the simplified model, interstory drift was check against code compliance per ASCE 7-10 Table 12.12-1: Allowable Story Drift. Under section 12.12.1 the arena falls under "All Other Structures" category, which allows for a 1.5% interstory drift limit for risk category III facilities. With the assumption that the main concourse was on grade, the computer model was analyzed for seismic drift and loading. Table 20 below shows that interstory drifts for the arena all are acceptable per ASCE 7-10 12.12.1. This completed the simplified seismic analysis of the facility.

	Interstory Drift Calculations - Penn State Ice Arena											
X-Direction Loading												
Story Level	tory Level Force (X-Dir) Displacement (in) Interstory Drift (in) % of Interstory Drift Code Compliant (<1.5%											
HIGH ROOF	123	4.782	0.332	0.198	Yes							
LOW ROOF	44	4.450	1.995	1.026	Yes							
CLUB	78	2.455	2.455	1.040	Yes							
Y-Direction L	.oading											
Story Level	Force (Y-Dir)	Displacement (in)	Interstory Drift (in)	% of Interstory Drift	Code Compliant (<1.5%)*							
HIGH ROOF	123	3.132	0.056	0.034	Yes							
LOW ROOF	44	3.076	1.990	1.023	Yes							
CLUB	78	1.086	1.086	0.460	Yes							
*Code Complia	nce per ASCE 7-10,	*Code Compliance per ASCE 7-10, Table 12.12-1: Allowable Story Drift - Risk Category III "All Other Structures" 0.015hx										

Table 20: Interstory Drift Calculations per ASCE 7-10

Long Span Truss Final Design Overview

Upon confirmation that the long span truss design was acceptable per seismic code provisions, the structural designer finalized design of all members and geometries. At this time, HPR Integrated Design finalized all high roof system MEP system locations and ran clash detection with the long span trusses to confirm a full coordinated, clean roof design. Once the high roof systems were coordinated the structural designer considered the design of the long span trusses completed. Figure 75 shows the final design of the long span trusses with member's sizes.

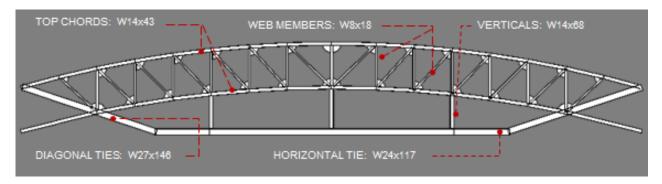


Figure 75: Long Span Truss Member Sizes

The structural designer used a combination of W14x43 and W14x53 wide flange shapes in the top and bottom chords of the top portion of the truss. Web members were W8x18 wide flange shapes that were picked over double angles due to economy. A tied arch framing system relies on the diagonal

ties to carry the induced thrust forces of the arch geometry and therefore resulted in large diagonal ties and a large horizontal tie which are W27x146 and W24x117 respectively.

The W24x117 horizontal tie member is designed to keep the truss tied together and also carry rigging loads that are designed for loading at panel points where vertical W14x68 members connect the top portion of the truss, which is in compression to the bottom ties. Connection design of the members within the long span truss was not conducted as a part of this thesis.

Geometry of the truss remained 28'-0" in overall depth and the 196' span was not changed from the original design. As stated earlier, the bottom portion of the truss is deep to allow for catwalks and large mechanical supply ducts to penetrate through the trusses and allowed for adequate headroom for maintenance of these systems.

Additional Structural Considerations

To complete the high roof framing design, the structural designer completed the design of the supplementary framing system and also performed interior column checks for capacity in combined loading conditions per the new long span trusses. The supplementary framing included bridging trusses that run perpendicular to the long span trusses. These trusses were also 14'-0" deep and frame into the W14 wide flange top and bottom chords of the top portion of the long span truss. Interior web members of these bridging trusses were 2L5x3 1/2x3/8x3/8 LLB double angles welded together. Figure 76 shows these bridging trusses running perpendicular to the long span trusses in a section of the high roof framing system.

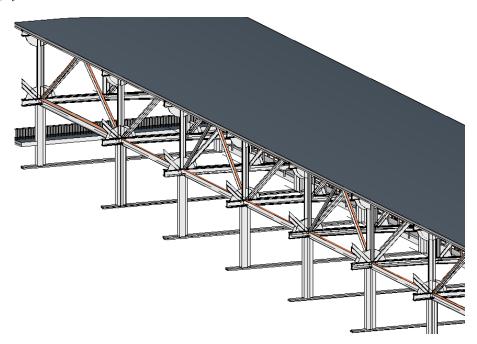


Figure 76: Bridging Trusses in High Roof Framing Section

Purlins in the high roof framing system were designed by hand assuming a simply supported beam configuration and limiting deflection criterion per IBC 2009 Table 1604.3. The supplementary framing members were then modeled in SAP2000 and check against critical gravity load combinations

for capacity and serviceability criterion. The structural designer changed the spacing of these purlins from 13'-0" in the existing design to 12'-0" in the new high roof framing system which was reflected in downsized members and cost savings in detailed estimates.

Much like the long span trusses, SAP2000 was used to confirm that hand calculations were correct in sizing the high framing members. Figure 77 shows the high roof framing model check that was completed by the structural designer.

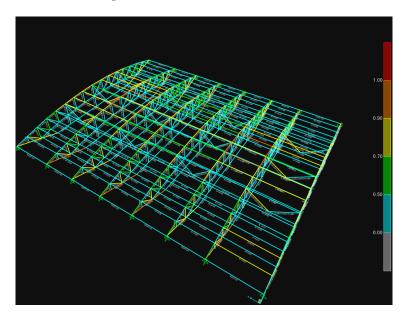


Figure 77: SAP2000 Supplementary Framing Checks

Additionally, the structural designer performed column capacity check using loads from SAP2000 frame analysis. Interior columns were checked as combined loading members for capacity due to the new long span trusses being approximately 3.5% heavier than the existing trusses. A sample calculation of these column checks can be seen in Table 21.

Column Capacity Check:											
Reference: 13th Edition - Al	SC Steel Man	ual			=	INPUTS					
Chapter 6 - Design Members	Subject To C	ombined	Loading								
Member Properties:											
Column:	X13-Y3			Pr/Pc	<	0.2					
Member Size:	W24x176										
Load Combination:	1.2D+1.6S-	+0.5W	>0.2	p*P _r +b _x *N	1,,	+b _y *M _{ry} < 1	.0		0.66	<	1
			<0.2	0.5(p*P _r)+	(9,	/8)(b _x *M _{rx}	$+b_y*M_{ry}$) < 1.0	Controls	0.46	<	1
Loading:			From Tabl	e 6-1:							
P _r (C)	725	kips		17.65	=	KL	[ft]				
P _r (T)	0	kips		0.518	=	b _x x 10 ³	(kip-ft) ⁻¹				
Shear	45	kips		2.06	=	b _y x 10 ³	(kip-ft) ⁻¹				
M _{rx}	400	ft-kips		0.622	=	p x 10 ³	(kips) ⁻¹				
M _{rv}	0	ft-kips									

Table 21: Sample Calculation - Column Capacity Checks

Detailed Cost Estimates

Case studies mentioned earlier in the report were utilized for cost analysis throughout the design of the new high framing system for the Penn State Ice Arena. Prior to design the structural designer obtained drawings from these selected case studies with the help of industry practitioners. Takeoffs and detailed cost estimates were performed on these facilities using cost data from the RMS Cost Works estimating platform. The detailed estimates, shown partially in Table 22, were done on the steel members only. Roof deck and roofing assemblies were not considered in this cost estimate. Cost data reflects the cost of steel per linear foot with overhead and profit figured into the estimates.

			Exi	sting Long Sp	an Trusses				TRUSSES			
	Structural Member	Quantity '			Total Weight (Ib)					Total Costs		
	W14x74	4	74	40.25	11914				101010031	_		
	W14x74	4	74	31.33	9273.68			\$13,298,96				
	W14x74	6	74	32	14208			\$20,375.04				
	W14x38	12	38	41	18696			\$28,408.08				
	W14x43	6	43	41	10578	5.289	\$64.13	\$15,775.98				
	W14x30	8	40	41	13120	6.56	\$46.42	\$15,225.76				
	W14x38	12	38	31.25	14250	7.125	\$57.74	\$21,652.50				
	W14x43	6	43	31.25	8062.5	4.03125	\$64.13	\$12,024.38				
	W14x30	8	30	31.25	7500	3.75	\$46.42	\$11,605.00				
	W14x38	18	38	32	21888	10.944	\$57.74	\$33,258.24				
	W14x43	9	43	32	12384	6.192	\$64.13	\$18,469.44				
	W14x30	12	30	32	11520	5.76	\$46.42	\$17,825.28	TOTAL	\$225,003.		
-1	W14x132	2	132	60	15840	7.92	\$181.94	\$21,832.80				
-1	W14x132	2	132	37.5	9900	4.95	\$181.94	\$13,645.50				
-1	W14x99	2	99	59	11682	5.841	\$137.87	\$16,268.66				
-1	W14x99	1	99	76	7524	3.762	\$137.87	\$10,478.12	PER TRUSS	\$102,072		
-1	W14x61	13	61	11.33	8984.69	4.492345	\$88.53	\$13,039.58	QUANTITY			
-1	2L8x8x1/2	14	52.8	17.6	13009.92	6.50496	\$108.80	\$26,808.32	TOTAL	\$612,437		
-2	W14x132	2	132	60	15840	7.92	\$181.94	\$21,832.80				
-2	W14x132	2	132	38	10032	5.016	\$181.94	\$13,827.44				
-2	W14x109	2	109	59.5	12971	6.4855	\$153.25	\$18,236.75				
-2	W14x132	1	132	76	10032	5.016	\$181.94	\$13,827.44				
-2	W14x61	3	61	11.33	2073.39	1.036695	\$88.53	\$3,009.13				
-2	2L6x6x1/2	4	39.2	11.33	1776.544	0.888272	\$81.60	\$3,698.11	PER TRUSS	\$98,125		
-2	2L5x5x3/8	9	24.6	11.33	2508.462	1.254231	\$68.00	\$6,933.96	QUANTITY			
-2	2L8x6x1/2	14	46	16	10304	5.152	\$74.82	\$16,759.68	TOTAL	\$98,125		
-3	W14x132	2	132	59	15576	7.788	\$181.94	\$21,468.92				
-3	W14x132	2	132	37.5	9900	4.95	\$181.94	\$13,645.50				
-3	W14x99	2	99	59	11682	5.841	\$137.87	\$16,268.66				
-3	W14x99	1	99	76	7524	3.762	\$137.87	\$10,478.12	PER TRUSS	\$99,653		
-3	W14x61	13	61	11	8723	4.3615	\$88.53	\$12,659.79	QUANTITY			
-3	2L8x8x1/2	14	52.8	16.5	12196.8	6.0984	\$108.80	\$25,132.80	TOTAL	\$99,653		
	· ·								GRAND TOTAL	\$1,035,220		
									\$/SF	\$21		

Table 22: High Roof Framing Cost Estimated - Existing Design

Cost estimates were completed and then divided by the total square footage that the high roof framing systems covered to allow for a cost per square foot analysis to be conducted on all three of the case studies. The structural designer recognized the existing design for the Penn State Ice Arena for comparison on addition cost and to prove the low cost of the existing design due to resources being tied up in rock excavation.

The cost estimates also allowed for the structural designer to compare the overall weight of the different trusses. This valuable information was relayed to the construction manager on the BIM team to allow for constructability and crane analysis procedures to commence. These cost estimates allowed

the structural designer to make educated decisions on the economics of the long span trusses and allowed the construction manager to check his detailed estimates against the structural designer's.

As stated earlier in the report, the goal of the larger long span trusses was to create a prominent roof profile. HPR Integrated Design wanted to use the money saved in the savings package to be reallocated into the new roof profile and high framing system. Real time tracking of the economics using detailed cost estimations was extremely helpful in the design of these trusses.

After completion of HPR Integrated Design's new long span truss design, a detailed cost estimate was completed by both the structural designer and construction manager. Figure 78 below shows the results of the detailed cost estimates of both the case studies and the new HPR Integrated Design alternative truss design economics.

Figure 78: Detailed Cost Estimate Summary

Figure 78 shows the utilitarian design of the existing Penn State Ice Arena roof system, which costs nearly 11% than the much smaller Compton Family Ice Arena at the University of Notre Dame.

BIM THESIS FINAL REPORT

HPR Integrated Design

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

As seen above, HPR Integrated Design's new high roof framing design costs roughly \$5 more per square foot costing approximately \$26.50/SF. HPR Integrated Design believes this new roof profile adds a more prominent roof profile to the facility, consistent with team goals.

The cost estimates also confirmed that the economics for the new high roof framing design of the Penn State Ice Arena is within similar cases studies. The economics of the arena fit perfectly between the larger Agganis Arena (Boston University) which is at \$27.85/SF but more expensive than the smaller Compton Family Arena at \$24.57/SF.

Mechanical System

The main arena will continue to be served by the current designs two 45,000 cfm AHU's. These AHU's have both an enthalpy wheels as well as a desiccant wheel. This means the unit is providing both the conditioning for the space as well as the dehumidification. When HPR Integrated design originally ran the load calculations of the main arena the total load was 80,723 cfm (50°F supply air). After the new roof profile had been decided on it was necessary for us to recalculate the load to make sure the new loads could be meet by the current system.

A Trane Trace model was created for the entire design as it was when we received the drawings. This was done entirely in Trace. In hind sight it could have been easier and a more efficient use of time to create a simplified Revit model that had the key areas of interest. I could have then applied both space and zone tags to the model and then exported the model via the gbxml format into a energy or load calculating software such as Trace, eQuest or Energy Plus. Although this was not done it could have been a good opportunity to test and see what type of progress BIM and especially Revit is making in the areas of MEP design and energy modeling.

The Trace Model that was created was very detailed had had to account for the Ice sheets in both the main arena and the auxiliary rink. This was modeled by setting the floor temperature to $20^{\rm o}{\rm F}$ as previously stated. It turned out that the ice sheets provided roughly 40 tons of cooling to the space. This is cooling that the HVAC system does not have to meet because of the presents of the Ice sheet. The 40 tons of cooling is then picked up by the ice generation equipment. This was not looked into in much detail for this thesis.

Design criteria

The main arena is to be maintained at 60°F and 40% relative humidity. The colder temperature is to reduced the load in the ice generation equipment. It is also essential to have a low relative humidity to prevent fogging in the arena. Having a large sheet of ice in an indoor space creates many difficulties when designing the HVAC system.

Final Design

The final design requires a total of 88,188 CFM of 50°F to be supplied to the main arena. This increased air volume in cause by the added volume the new roof profile created. The current designs two 45,000 CFM AHU's are more than enough to meet this load. The space has to main duct runs that are each 64" round ducts. The duct has diffusers on three of its sides. One directs air up towards the club level seats, the largest diffuser serves the seats in the lower bowl, while a third smaller diffuser

provides the required ventilation are above the ice. As mentioned in the Savings package, the return for the main arena system is located in the event level plenum space. The supply air is supplied high in this system and returned low with 1/3 of the air being returned just below the club level seating and the other 2/3 returning trough return grilles built in to the lower bowl stadia. The Revit model was essential in coordinating these tight spaces. Figure 79 depicts the high supply low return as well at the diffuser locations

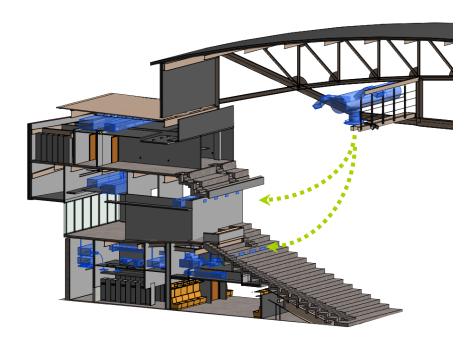


Figure 79: High Supply, Low Return, & Diffusers

In an additional effort to save energy the main arena's duct system is connected between AHU units. This means that if the load could be served by the capacity of one of the AHU the other can shut down and the one running has the ability to serve the whole space. If the ducts were not interconnected the one running AHU would not have the ability to evenly distribute the air. The controls for this system were not looked into is great detail.

The location of the duct work in this space was a combination of inputs. The optimum location for the distribution of air, the structural system, lighting system and catwalk location all played into the final location. The duct runs between the bottom cord and the tie of the tied arch structural joint. It is also running adjacent to the cat walk system on the opposite side on the lights. This allows for both the optimum lighting of the arena ice and for diffusers and duct work that can be easily maintained or adjusted.

BIM THESIS FINAL REPORT

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

Lighting System

The lighting in the main arena bowl is one of function. First and foremost is the lighting for the ice sheet and providing the necessary illumination and uniformity for the hockey players and spectators. Secondary to that is improving the customer experience for the spectators when they are not watching hockey being played. To do this light is provided at the perimeter of the arena seating bowl near the vomitories. Doing this creates a destination point for patrons leaving the lower bowl.

Design Criteria

The illumination design criteria for the main arena ice sheet are dictated by both the IES 10th edition Lighting Handbook and the NCAA Best Lighting Practice. The table below shows the strictest criteria between the two references.

Horizontal Illuminance 1500 lx @ Ice

Vertical Illuminance 400 lx @ 3'-5' AFF

Horizontal Uniformity CV <= 0.13, Emax:Emin <= 1.7:1

The power density for the main arena bowl is dictated by AHSRAE Standard 90.1 section 9. The allowable power density for arena is 3.1 watt per square foot, while the power density for the seating area is 0.43 watts per square foot. The total allowable connected load for the arena bowl is 66752 Watts.

Although the emergency lighting system was not designed the implementation of LED floodlights mounted on the catwalk illuminating the seating area could be used to provide the required illumination for egress. The table below outlines the design criteria for the emergency system.

Horizontal Illuminance 75 lx min @ floor

Horizontal Uniformity Eavg:Emin <= 2:1, Emax:Emin <= 10:1

Results

The lighting system for the main arena ice sheet is going to be mounted on a catwalk system contained within the high roof structure. The layout and location of the catwalk system needed to be determined early within the design of the building. A simple preliminary model of the arena was constructed to run quick calculations to determine the optimum catwalk location. Figure 80 shows the preliminary model.

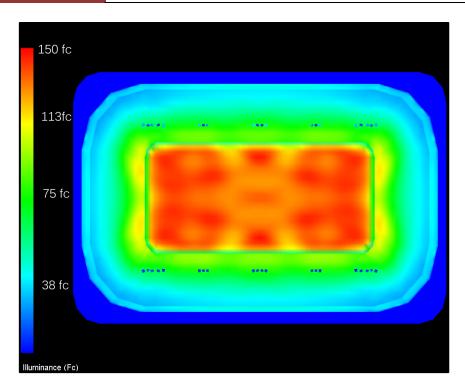


Figure 80: Preliminary Lighting Layout for Main Arena

After the preliminary locations of the luminaires were determined the information was relayed to the structural designer. When the structural designer was going through design integration of the high steel design the lighting design was being tweaked concurrently.

The lighting for the ice sheet utilizes 60 indoor sports lighting luminaires with black out shutters. Refer to Appendix G for cut sheet details of luminaires. An important consideration that makes the lighting in the arena more difficult is the need to use circuits across all three phases of power. Doing so reduces the strobe affect when video cameras are utilized for slow motion action shots. Therefore to negate this affect every third luminaire was circuited on the same phase.

Other important design considerations are the modeling of players on the ice. The uniformity of the illumination plays into this as well as using luminaires from various locations to illuminate the same point on the ice. The final layout can be seen in Figure 81 and Figure 82.

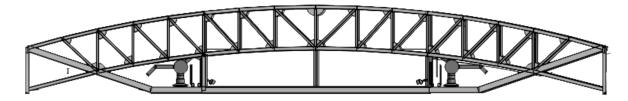


Figure 81: High Steel with Coordinated MEP System

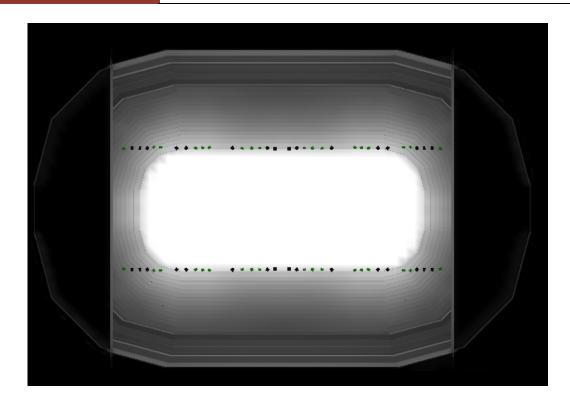


Figure 82: Finalized Lighting Layout

The results of the lighting system with the configuration that HPR proposes are compared to the design criteria in the following table. Figures 83, 84, and 85 show AGI renderings of the arena model. With the system implemented by HPR the total connected wattage is 65000 watts. Which is a savings of 1752 watts over the allowable.

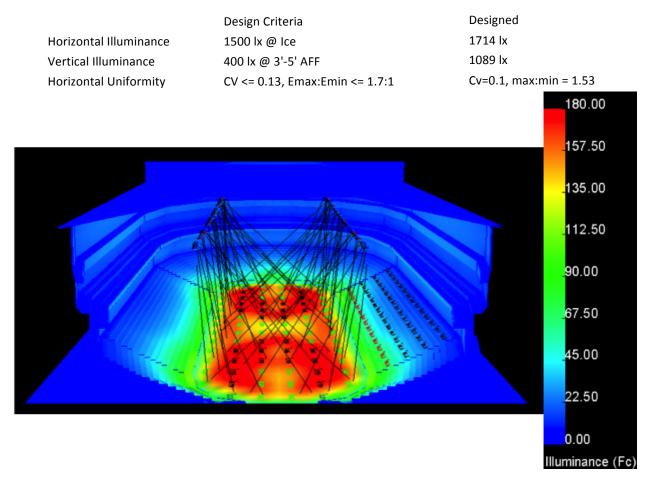


Figure 83: Pseudo Color Rendering of Main Arena

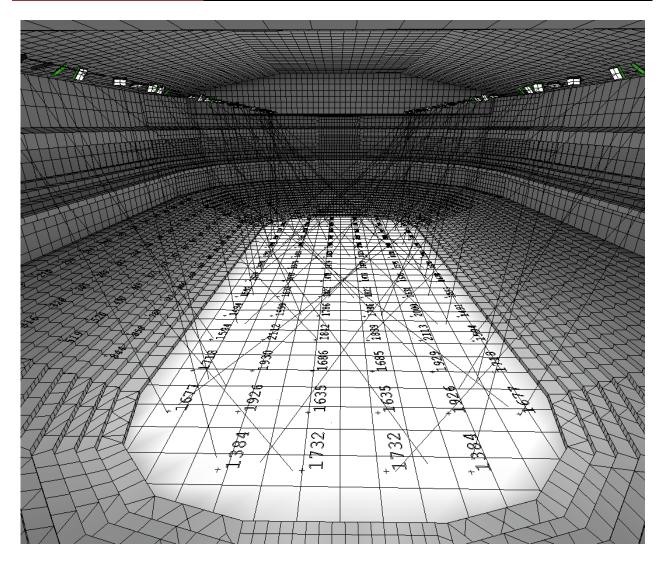


Figure 84: AGI Rendering Showing Arena Illumination & Model Overlay

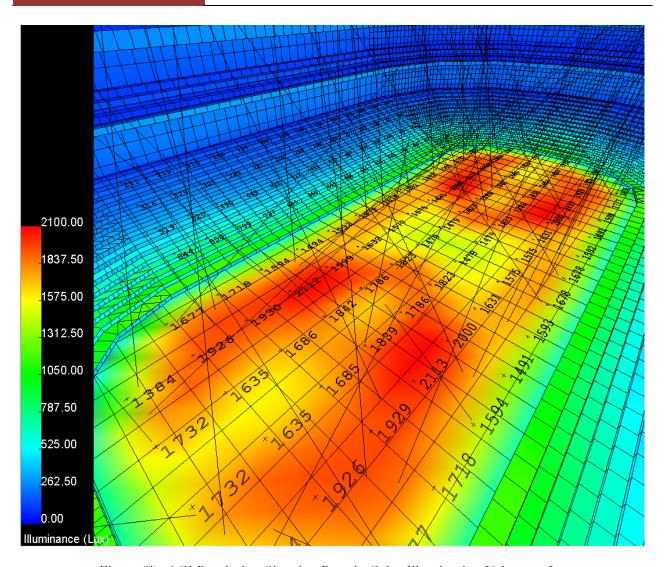
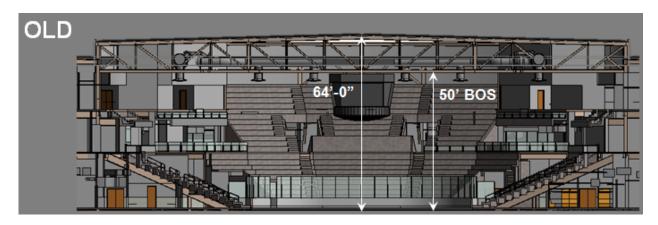



Figure 85: AGI Rendering Showing Pseudo Color Illumination Values on Ice

Design Impacts

HPR Integrated Design made collaborative decisions early in the design process of this thesis to create a more prominent high roof framing system. By reallocating the cost savings from raising the event level in the Savings package, the design team was able to reinvest construction funds into the high roof framing systems that made more a more recognizable roof profile. Benefits of this new arched roof profile could be realized architecturally through a facility that mimics the feasibility renderings that HPR deemed essential to deliver upon.

Engineering design impacts for the new systems were significant as well as the new architectural aesthetic that has been created in the facility. The most noticeable impact is the transformation in size of the arena. Figure 86 below shows a comparison of a section through the existing design and HPR Integrated Design's new proposed design.

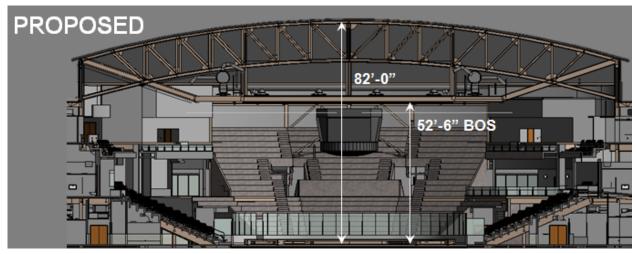


Figure 86: Comparison of Transverse Section through the Arena

HPR Integrated Design's proposed design increases the overall height of the arena 18 feet from the existing 64'-0" to 82'-0", still compliant with the 90 foot height restriction per the University Planned District section 1240.b.5 requirements. The proposed design adds about an additional 800,000 cubic feet of air as described previously in mechanical considerations. As stated prior, the mechanical

designer analyzed the additional volume and the effect on the capacity of the two 45,000 CFM air handlers supplying the space early in the design.

HPR Integrated Design's long span trusses are much deeper than the existing design. The proposed trusses are 28'-0" in total depth compared to the 12'-6" maximum depth as stated earlier in this report. A comparison of the existing and proposed trusses is shown in Figure 87 below. Although truss design was driven by constructability and compatibility of the high roof MEP framing systems, team goals dictated that the proposed truss design increase in depth to create a prominent arched roof profile.



Figure 87: Comparison of Existing & Proposed Truss Designs

Delivery & Constructability

Delivery

Much like the current design, constructability of this size truss system is difficult and could be costly. The new roof system has a truss system that is deeper than that of the current design requiring heavier purlins to sustain the lateral and vertical forces. The new truss system has a weight of 538 tons, a 34.5% increase from that of the current design.

Due to the truss span, these new trusses will be prefabbed and delivered by flatbed trucks in three sections with the bottom chords and vertical members needing to be welded on-site. Figure 88 shows the breakdown of the truss sections to be delivered.

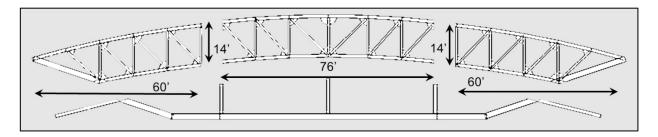


Figure 88: Deliverable Truss Sections

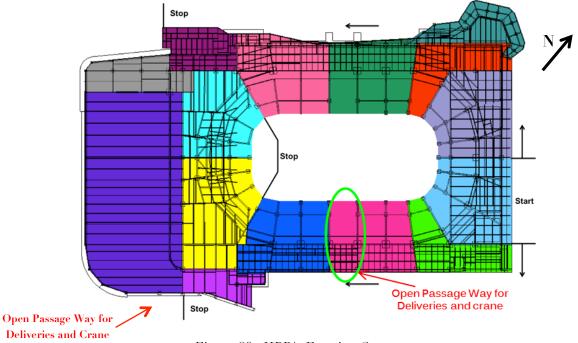
Current Project Design Sequencing & Constructability

The current project team's schedule shows the completion of all steel prior to the build-up and erection of the trusses. Figure 89 shows the sequence that the project team is using, starting in the south pink section circling east and back around to the blue section, followed by the east roof, northeast entrance canopy, and the auxiliary rink. The circled portion will have the steel erection completed, however the section will not have exterior wall enclosures or interiors completed complete until after all the trusses and stadia have been completely installed. The location lies between columns X9 to X10, and Y7 to Y10. This is to allow access for the 300 ton crane to drive in and out of the arena, and for precast stadia deliveries.

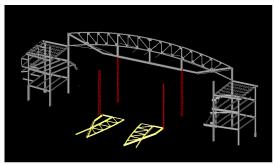
Originally, the project team opted for using shoring to support the trusses during erection. Through value engineering, they found it to be more cost effective to use two cranes rather than one large crane and shoring. This process requires the use of a 200 ton and a 300 ton hydraulic crane. To begin, the trusses are delivered by a flatbed truck in three sections to the north perimeter of the building where they are built up. The 300 ton crane is inside the building while the 200 ton crane is located on the outside of the building. Floor slabs and underdrains are not to be placed until after building enclosures are complete to avoid damage from the weight of the crane.

The trusses are to be erected in two picks for each truss. The first pick will be a 2/3 built-up section, and the second pick being the remaining 1/3. The first two trusses are to be installed prior to setting any purlins. As the trusses are being lifted into place, the precast stadia are also being installed. Using this sequence, the trusses have a final completion date of November 29, 2012.

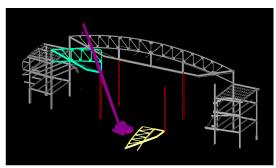


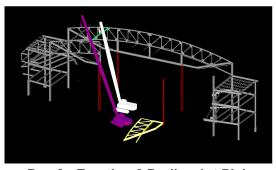

Figure 89: Current Design Erection Sequence

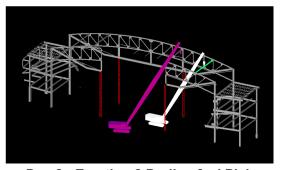
HPR's Erection Sequence

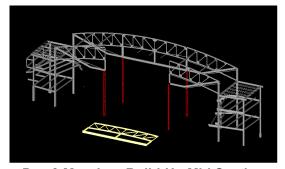

For HPR to use the same cranes and sequence as the current project team, the increased cost due to the increased weight would be \$623,056 over budget with 18 workdays added to the schedule. HPR found this to be unacceptable. First thing the construction manager did was to create a site logistics plan to help devise a more cost effective sequence.

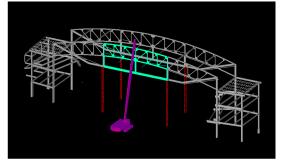
Based on the site logistics plan, HPR determined that building up and erecting the trusses from inside the building after the steel on the north, south, and east sides are erected could improve the schedule and cost. Foundations will begin in the eastern portion of the building. As foundations are completed, slab on grade underslab MEP utilities will be run, followed by concrete placement. It is important to note that placement of the underdrains and ice slabs will not be placed until steel erection, truss erection, and precast stadia installation has been completed. This is to avoid damage to the slab from the crane as it moves along the arena floor. Upon completion of slab on grade in each section, steel erection will begin.


Figure 90 shows the steel erection sequence, beginning in the light blue section in the east, and then completing the north and south sides simultaneously utilizing one 150-ton crane for each side. Due to the increased weight of the truss system, it was important to stay on schedule as much as possible. The increased weight results in an increase work days in the schedule. Steel erection will halt for the time being once the north and south purple sections are completed. It is important to note at this time that the lower bowl stadia steel will not be installed yet. This is to allow the crane to maneuver and for shoring to be installed. In order for the crane to maneuver in and out of the arena, foundations in the south portion of the auxiliary rink, between columns X2 and X4, will not be completed until after the crane has finished erecting the west main arena steel.


At this time, the sections of the trusses will be delivered by a flatbed truck to the inside of the building using the same auxiliary south rink opening. The trusses will be erected east to west. Due to the increased depth of trusses, each truss will need to be erected in a three-pick sequence. The process for build-up and erection of each truss will take three days. The outside sections will be delivered and built-up on day 1 and erected on day 2. On day 3, the mid section will be built-up in the morning and erected in the afternoon. Two 2 foot by 2 foot shoring towers will be installed per truss to sustain the vertical force prior to erection. The shoring towers have a capability of carrying 5 tons per leg. Each truss weighs 37 tons. To sustain the lateral forces as the trusses are being erected, a 40-ton crane will be used to installed two of the purlins for each of the outside sections while the 150 ton crane maintains the stability of the pick. The remaining purlins will be installed upon completion of the mid section erection. Figure 91 shows the 4D erection sequence for each truss.


Day 1 - Build-Up Outside Sections


Day 2 - Erect Outside Sections


Day 2 - Erecting 2 Purlins 1st Pick

Day 2 - Erecting 2 Purlins 2nd Pick

Day 3 Morning-Build-Up Mid Section

Day 3 Afternoon - Erect Mid Section

Figure 91: 4D Truss Erection Sequence

BIM THESIS FINAL REPORT

HPR Integrated Design

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

As mentioned, there will be two 150 ton cranes for steel erection. To stay on schedule, as the trusses are being erected, the second 150 ton crane used to complete the steel erection for the east roof, the northeast entrance canopy, northwest mechanical court, and west auxiliary rink steel. Once these sections are complete, the crane will be taken off-site.

HPR will be renting shoring towers during of the truss erection, however, only 8 towers will be rented. At completion of the installation of the purlins between truss 3 and 4, the shoring tower for truss one will be taken down and erected for truss 5, and so on. Shoring towers for trusses 5 through 8 will remain in place until completion of installation of the purlins between truss 7 and 8.

Upon completion of installation of the purlins between truss 3 and 4, the arena bowl stadia steel will begin to be installed followed by the precast stadia installation. This will be completing using 10,000 lb telehandlers with a boom reach of 42 feet. With the boom reach and the height of the telehandler, the telehandler will be able to reach 55 feet. The telehandler will have a capability of lifting a maximum 6,000 pounds at the maximum reach.

The west arena steel will be erected after the trusses are installed, followed by the auxiliary rink south foundations, steel, and roof. Once the trusses are complete, the smaller crane will be taken offsite. Figure 92 on the next page shows the 4D erection sequence for the steel and trusses. By using this sequence and reconsolidating the schedule, HPR found that the trusses could be completed by October 26, 2012. This is 26 working days ahead of the current design schedule at an added cost of \$528,521 over budget.

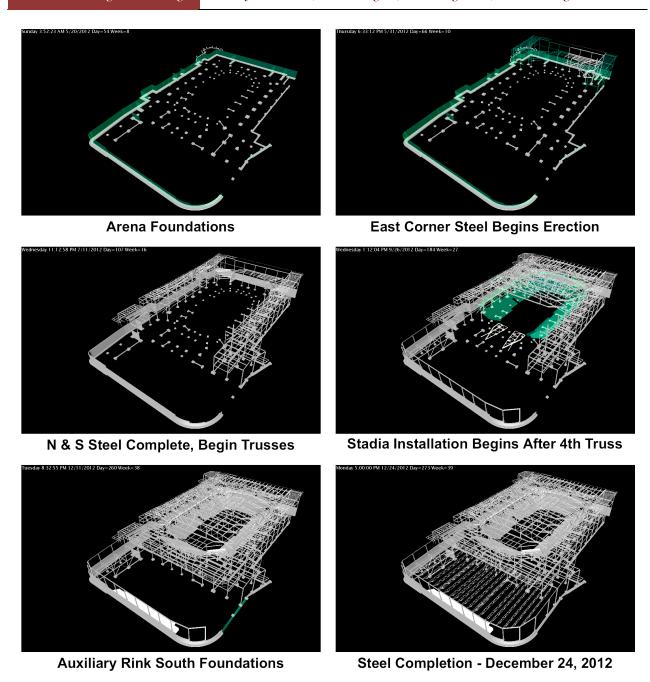


Figure 92: 4D Steel & Truss Erection Sequence

Site Logistics

By creating a site logistics plan, HPR was able to devise a cost effective method for steel and truss erection. The site sits along University Drive, which has a sloping grade. The main entrance is located on grade of the main concourse on the north elevation, however the north side of the event level is below grade. The event level has its own on grade entrances on the south side 20 feet 9 inches below the main grade. Since the event level only has the south side that is not hidden by soil, this is where the crane will have to enter and exit the arena.

Due to sizes of the trusses, the most cost effective way to erect the trusses is to erect the steel for the east, north, and south sides of the building, and then build-up and erect the trusses from with inside the arena. This will also improve the schedule. Figure 93 shows the site logistics plan developed by HPR's construction manager. Looking closer at the site, locations for steel laydown can be seen on the north and south sides of the building.

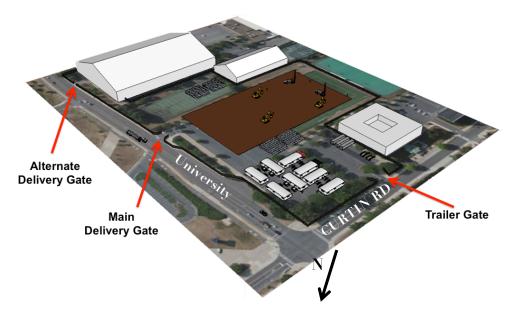


Figure 93: Site Logistics Plan

Figure 94: South Side Steel Laydown

Figure 95: North Side Steel Laydown

Figure 96 shows the truss delivery logistics. Flatbed truck deliveries will enter the site at the main gate on University Drive and be brought in along the south perimeter of the building. As the truck reaches the opening at the auxiliary rinks south opening, the truck will back into the arena to the laydown point. Once the truck has unloaded, it will exit the arena, head west, and continue its path around the north perimeter of the building and out onto University Drive.

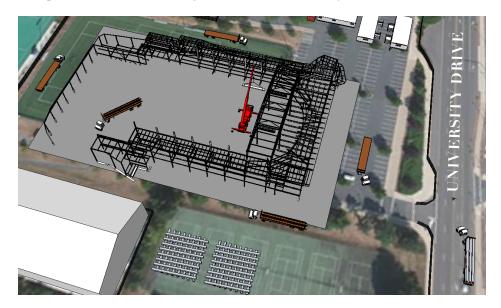


Figure 96: Truss Delivery Logistics

Figure 97 shows the building footprint excavation logistics. Excavation will begin on the west end of the arena and move towards the east. Dump trucks will the main gate on University Drive, turn right and follow around the north perimeter of the building. As the front loader loads the truck with soil and rock, the trucks with follow the south perimeter of the building and back out the University Drive gate.



Figure 97: Building Footprint Excavation Logistics

Crane Analysis

In determining the most cost effective method for steel and truss erection, the construction manager performed a crane analysis. First, an analysis was performed to determine the cost of using the current project team's erection sequence. The results were found to be \$623,056 for the roof system alone, and \$479,246 for the overall steel of the arena. See Appendix G for the breakdown of these costs.

In order to select the type crane needed, the load capacity of each truss, the height the truss needed to be raised, the radius in which the crane could swing, the length the boom needed to be extended, and any site constraints.

Truss Tons (Ave/Section)	37 (12-1/3)
Height (ft)	90
Radius (ft)	55
Boom Length (ft)	105

Once these numbers were determined, the construction manager referenced load charts found on Bigge Crane and Rigging Co.'s website. Based on the erection sequence and the load charts, it was determined that a 150 ton hydraulic crane would work for erecting the trusses, and a 40 ton hydraulic crane for installing the purlins. See Appendix G for cut sheets on each of the cranes.

By using these cranes and the designed sequencing method, HPR is able to reduce the costs to \$528,521 for the roof system alone, and \$306,381 for the overall steel of the arena. That is difference of \$94,535 and \$172,865, respectively. See Appendix G for the breakdown of these costs.

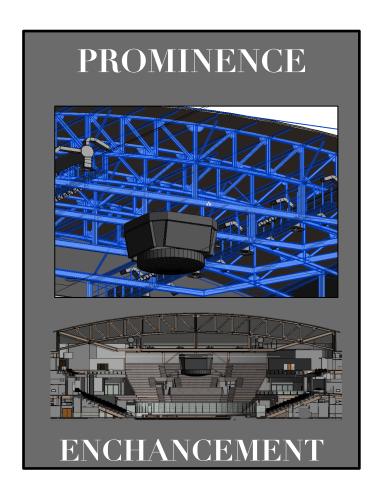
Cost & Schedule Impact

The newly designed roof system was designed with the intent to enhance and give prominence to the roof, and to reflect that of the adjacent arenas. After reviewing the initial feasibility study designs, it was important to design and deliver a high quality product that owner originally sought out.

Using Quantity Takeoff and costs found in *Craftsman's National Estimator*, the construction manager estimated the roofing materials, truss system, and catwalk system for the current project design and HPR's design. Figure 98 shows an image of the new truss system in Quantity Takeoff.

Figure 98: HPR's Proposed Truss System in Quantity Takeoff

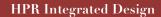
The new truss system has a greater weight increasing the cost, however, some costs could be saved with the catwalk system. The following changes were made, with increased spending listed first, followed by additional savings.


Increased Spending	
Truss System	\$377,479 (25.0%)
Shoring	\$7,707
Roof Materials	\$197,831 (13.7%)
Additional Savings	
Catwalk	\$54,495 (19.2%)

By changing the erection sequence, the construction manager was able to improve the schedule by 26 working days, with a completion date of October 24, 2012. The new erection sequence also allowed for erection to be completed using smaller cranes reducing the equipment costs. The overall design of the new roof system increased the budget by \$528,521. See Appendix G for complete breakdown of differences in cost for this design package.

Package Summary

The main goal of the Prominence Package was to enhance the roof and give the owner a building that reflected that of the original feasibility study, a building with a grander appearance. Through coordination, HPR designed a high-roof arched truss system to help give the prominent look that the owner originally saw in the feasibility study.


As the weight of the new truss system increased, so did the cost. Based on the crane analysis that was performed and the detailed erection sequence that was created, the construction manager is able to keep the cost to \$528,521 over budget and complete truss erection 26 workdays ahead of schedule.

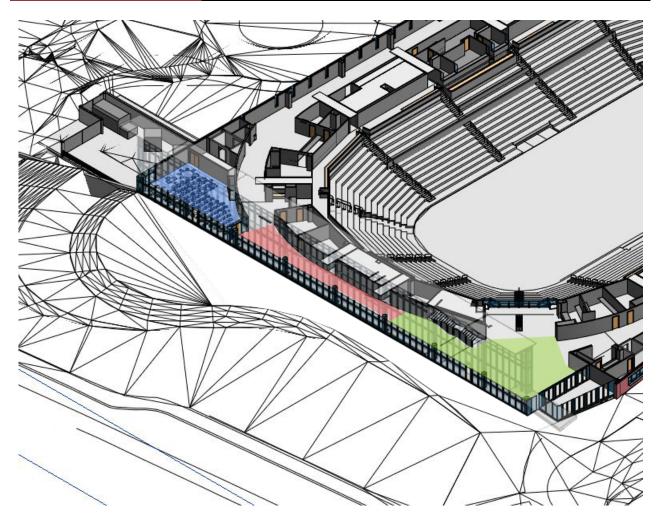
ENHANCEMENT PACKAGE: Function

BIM THESIS FINAL REPORT

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

Opportunity Statement

When HPR Integrated Design started to look at the existing plans for the Penn State Ice Arena, one area that was determined that could be improved upon was the façade design. This included the material choices as well as the size and appearances of the entrances. The east façade's current design consists of a full length curtain wall that scales from ground to roof. HPR Integrated Design believes that the intent of this design was to create and impressive view from University Drive as well as a view out to Mt. Nittany and the Bryce Jordan Center. A new design can improve on these original goals with the reduction of thermal loads on the building, cutting cost and potentially shortening the schedule.


As part of the east façade, the main entrance will be altered. HPR Integrated Design will also aim to draw more attention to the student entrance. Although the student entrance is not the main entrance, it is still highly visible from the other sports fields and to the students on a daily basis.

Design Goals

Architectural

The main goal for the architectural redesign will be to provide a clear function for the form of the building. As mentioned in the problem statement the original architecture is transparent curtain wall intended to provide impressive views both out of the building and into the building. This original architectural intent will be kept with HPR Integrated Design's new redesigned façade and entrances with slight alterations to fit HPR's form follows function theme.

The spaces on the east façade of the building contain three distinct areas that respectively have a different occupancy levels and transparency needs. A two story atrium, general concourse space and lounge area all are located on the main concourse level on the east façade. On the club level the atrium continues as well as a general circulation space and a dining/lounge area. The atrium need a higher transparency both in and out of the building, the concourse need a high transparency out but a minimized view into the building due to the placement of restrooms and concessions in this area, and finally the lounge area on the southern part of the façade needed high transparency out to views of the surrounding landscape but minimal views in to increase privacy. This layout can be seen in Figure 97.

Green = Atrium, Red = Circulation, Blue = Lounge

Figure 99: East Facade Spaces

With the function of the spaces defined HPR designed the façade to contain brick piers encasing the structural columns. The spacing of the brick piers would relate to the adjacent spaces to reduce or increase the amount of glass on the façade. As seen in Figure 100, the piers were more closely spaced on the circulation zone and further in the atrium space, while the piers on the lounge zone were left spaced apart to increase view out.

Figure 100: Proposed East Facade Elevation

Applying the form follows function theme to the entrances of the building posed a different architectural challenge to HPR. With both the student and main entrance HPR wanted to create "lanterns" that would guide patrons into the building. While doing this HPR wanted to create a connection between the academic core of the campus to the sports facilities on the northeastern portion of campus. A Rendering of the existing design by the design team can be seen in Figure 99.

Figure 101: Existing Facade

Taking a look at other collegiate arenas and stadium HPR came across Reser Stadium, the football stadium for Oklahoma State University. HPR thought that the entrance at Reser stadium, shown in Figure 102 did an excellent job of meeting our design criteria of form following function and transparency. After deciding to use Reser Stadium as inspiration we did preliminary modeling in Google SketchUp (shown in Figure 103) to work out geometries and dimensions. After doing so the final product was modeled in the teams linked federated Revit Architecture model. The proposed design for the main is shown in Figure 104.

Figure 102: Reser Stadium

Figure 103: Preliminary Modeling in Google SketchUp

Figure 104: Proposed Design for the Main Entrance Showing Lantern Effect

To address the precedence of hierarchy for the student entrance as part of an architectural link to the campus, the architectural forms used on the main entrance were scaled down to create an impressive student entrance. Shown in Figure 105.

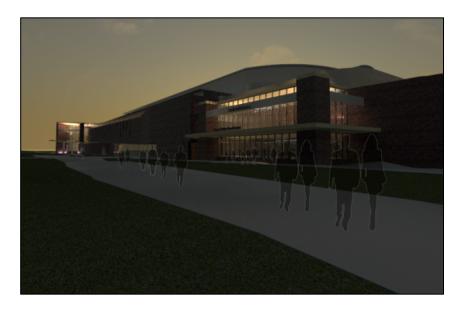


Figure 105: Proposed Design for the Student Entrance

Energy

HPR Integrated Design was interested in investigating the effects that the percent glass has on the energy consumption. Since the façade we are interesting in changing faces north east it is our assumption that the energy savings would be minimal and that the majority of the savings would come from the higher R-value of the wall in the place of existing glass.

We investigated the effects that the amount of glass has on energy. Once a decision was made regarding the amount of glass, keeping in mind both the energy use and the architectural vision, a separate analysis was done that investigated the effects of different curtain wall systems and of Wall construction type. Kawneer curtain walls were used for this comparison.

Effect of Glass

Five different percentages of glass were chosen for this study:100% (existing design), 70%, 50%, 30%, and 10%. An energy analysis was done using the Trane Trace model created for the loads. Schedules were changed to reflect the actual building occupancy and use schedules. The systems were also changed to reflect the AHU's of the actual design. The main changes included the addition of both the enthalpy and desiccant wheels in AHU-10,11, and 12, as well as the heat pipes in AHU-5,7,8,9. Fan power was also added for all of the air handling units.

The construction type for this analysis for this percent glass study used wall U-Value of 0.029 which was considered to be a good construction type will below the maximum allowed by ASHRAE 90.1 for climate zone 5A. The U-Value for the glass curtain wall system was set to 0.4. This is also below the maximum allowed for climate zone 5A.

In Table 23 you can see that the percent of glass does have an effect on the load on AHU-2,3, and 4 but that the reduction in load is not that drastic. This is because most of the spaces that these air handlers serve are not adjacent to the curtain wall in addition to the curtain wall facing northeast. It is HPR opinion that the orientation of this façade was chosen because of its limited impact on load.

	Load (MBTU/h)									
% Glass	AHU-2	AHU-3	AHU-4	Total	Percent Reduction					
100	358.6	1041.2	1566.7	2966.5	0.0%					
70	333.7	1029.7	1550.3	2913.7	1.8%					
50	311.2	1016	1541.8	2869	3.3%					
30	294.5	1001	1529.9	2825.4	4.8%					
10	281.5	978	1517.9	2777.4	6.4%					

Table 23: Percent Glass Effects on Spaces Adjacent to the Curtain Wall

Table 24 shows how this reduction in the percent of glass along the eastern façade affected the total energy consumption of the entire arena over the course of the year. Here the savings are even smaller when considered as a percent. With that said it sill shows a max of over \$8,000 a year in total energy cost. A 30-year life cycle cost analysis was also done to see what effect this had on the life time cost of the building and the maximum amount of savings was roughly \$250,000. This was determined using the Energy Price Indices and Discount Factors for Life Cycle Cost Analysis and can be seen in Table 25.

		Co	ost		
% Glass	Cooling/Electric	Heating	Total Building Energy Cost	Percent Reduction	30 Year Life Cycle
100	\$335,150.00	\$233,366.00	\$568,516.00	0.0%	\$16,521,128.24
70	\$333,878.00	\$232,560.00	\$566,438.00	0.4%	\$16,460,867.28
50	\$332,857.00	\$231,661.00	\$564,518.00	0.7%	\$16,404,774.76
30	\$331,756.00	\$230,837.00	\$562,593.00	1.0%	\$16,348,743.44
10	\$330,471.00	\$229,895.00	\$560,366.00	1.4%	\$16,283,951.96

Table 24: Percent Glass Effects on Total Energy for Building

Table Ca-1. Projected fuel price indices (excluding general inflation), by end-use sector and fuel type.

Census Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont)

		Proje	ected A	April 1	l Fuel	Price	Indice	es (Apı	ril 1,	2011 =	= 1.00))			
Sector and Fuel	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Residential	1.02	1.03	1.03	1.03	1.02	1.00	0.99	0.99	0.98	0.98	0.97	0.96	0.95	0.95	0.94
Electricity Distillate Oil LPG Natural Gas	0.96 1.04 0.97		0.97 1.08	0.99 1.09 0.95	1.02 1.10 0.95	1.06 1.12 0.96	1.09	1.12 1.15 0.99		1.15 1.18	1.17	1.18 1.20	1.20 1.21	1.22	1.23 1.23 1.09
Commercial															
Electricity Distillate Oil Residual Oil Natural Gas Coal	0.96 1.00 0.83 0.98 1.03	0.93 1.01 0.80 0.95 1.04	1.03	0.91 1.06 0.88 0.90 1.04	0.90 1.09 0.90 0.90 1.04	0.90 1.14 0.94 0.91 1.04	0.90 1.17 0.97 0.92 1.04	0.91 1.20 0.98 0.93 1.05	1.22 1.01 0.94	1.24 1.03 0.95	1.27 1.06 0.97	1.28 1.10 0.98	1.30 1.13 0.99	1.32 1.14 1.00	0.94 1.33 1.15 1.01 1.07
Industrial															
Electricity Distillate Oil Residual Oil Natural Gas Coal	0.95 1.00 0.99 1.00 1.01	0.93 1.02 1.00 1.00	0.92 1.04 1.03 0.98 1.02	0.92 1.06 1.07 0.98 1.01	0.93 1.10 1.10 0.98 1.02	0.94 1.14 1.13 0.98 1.03	0.95 1.17 1.16 0.99 1.03	0.97 1.20 1.18 1.01 1.03	1.00 1.22 1.20 1.02 1.03		1.26	1.28	1.30	1.32	1.07 1.33 1.35 1.12 1.04

Table Ca-1, continued. Projected fuel price indices (excluding general inflation), by end-use sector and fuel type.

Census Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont)

		Proje	ected A	April 1	Fuel	Price	Indice	es (Apı	ril 1,	2011 :	= 1.00)				
Sector and Fuel	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
Residential Electricity Distillate Oil LPG Natural Gas	0.93 1.24 1.24 1.10	1.25	1.26	1.26	0.92 1.27 1.26 1.15	0.92 1.27 1.26 1.16	1.28	0.92 1.28 1.26 1.18	1.29 1.26	1.29 1.26	1.30 1.26	1.30 1.26	1.30	1.30 1.27	1.31 1.27
Commercial Electricity Distillate Oil Residual Oil Natural Gas Coal	0.94 1.34 1.16 1.02 1.07		1.37 1.18 1.04	0.93 1.37 1.18 1.05 1.09	0.93 1.37 1.19 1.06 1.09	1.38 1.19 1.07	0.94 1.38 1.20 1.08 1.11	0.95 1.39 1.21 1.09 1.11			1.40 1.22 1.12	1.41 1.23 1.14	1.41 1.23 1.15	1.41 1.24 1.17	1.42 1.24 1.18
Industrial Electricity Distillate Oil Residual Oil Natural Gas Coal	1.08 1.34 1.36 1.13	1.35	1.37 1.38 1.16	1.10 1.37 1.38 1.17 1.06	1.11 1.37 1.39 1.19	1.11 1.37 1.39 1.20	1.12 1.38 1.40 1.21 1.06	1.13 1.39 1.41 1.22 1.07		1.40	1.40	1.40	1.41	1.41	1.15 1.41 1.45 1.37 1.09

Table 25: Table Ca-1 of the Energy Price Indexes & Discount Factors

From these results HPR Integrated Design determined that an energy savings gained from a deduction of glass along the east would be taken as an added benefit to a change that would be driven by an architectural vision or goal.

As stated earlier the goal of the function package was to improve the function of the spaces through the façade, and to create a more distinct and attractive entrances. The portion of the façade that was adjacent to the concourse was to mimic the rhythmic vertical slit windows that line the concourse on the other two façades. Figure 106 shows the vertical slit windows along the concourse of the south façade.

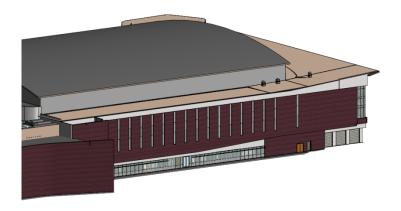


Figure 106: South Facade

It was HPR Integrated Design's goal to invert this trend on the east façade. Instead of a large brick wall with vertical slit windows, we were going to create a large glass façade with thin brick piers. We originally thought the design would level out around 70% glass but as the design progressed we quickly had a façade that meet out architectural goals and hade reduced the percent glass to 50%. This can be seen in Figure 107.

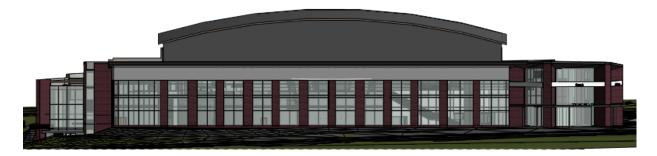


Figure 107: Proposed Design for East Facade

Effect of Wall Construction Type and Curtain Wall System

Once the percent glass and the final architectural design was decided open the curtain wall system had to be selected as well as the wall construction type. HPR Integrated Design decided to study two different wall construction types. The First was a standard wall construction type that original design used and that I had previous used in the percent class study. The U-Value (0.029) for

this construction was confirmed by the structural designer using HAM Toolbox. The second was a block backed brick wall. This was chosen because of the possible reduction in material and labor cost. This U-Value (0.055) was also confirmed using the HAM Toolbox.

Bri	ck Wall	Cost							
Construction	Total U-Value BTU/h-ft²-F	Cooling/ Electric	Heating	Total Building Energy Cost	30 year life Cycle cost				
CMU &Brick	0.055	\$331,792.00	\$232,465.00	\$564,257.00	\$16,399,631.92				
Stud & Brick	0.029	\$331,785.00	\$231,613.00	\$563,398.00	\$16,373,330.92				
CMU & Brick	0.055	\$335,886.00	\$231,368.00	\$567,254.00	\$16,480,488.08				
Stud & Brick	0.029	\$335,951.00	\$230,487.00	\$566,438.00	\$16,455,311.64				
CMU & Brick	0.055	\$331,938.00	\$231,484.00	\$563,422.00	\$16,373,656.24				
Stud &Brick	0.029	\$331,941.00	\$230,412.00	\$562,353.00	\$16,340,894.04				
CMU & Brick	0.055	\$332,538.00	\$231,085.00	\$563,623.00	\$16,378,206.88				
Stud & Brick	0.029	\$332,529.00	\$230,238.00	\$562,767.00	\$16,352,003.16				

Table 26: Wall Construction Type Study

Table 26 shows the results of the wall construction type study. The energy uses were fairly comparable between the to wall types. Once the costs of the two systems were actually compared it did not make sense to switch from the current designs stud and brick wall construction to the less efficient block backed brick wall.

The wall construction type determined it was than time to compare and select a curtain wall system. HPR Integrated Design decided to use Kawneer Wall Systems as our curtain wall provider. We choose Kawneer because we had access to one of there sales representatives in Andy Zubal. We would compare two different wall systems that Kawneer offers, the 1600 wall system and the 1600 UT wall System. The UT stands for Ultra Tremal and is on of the products that Kawneer is trying to push. With the standard wall system we compared the different mullion types you can install the system with. You will see there is a small impact on the systems U-value and shading coefficient.

The U-Values for the systems were found using the Kanween product data sheet using a center of glass U-value of 0.22. An example of the chart these data sheet provided can be seen in Table 27.

System U-Factor for Vision Glass

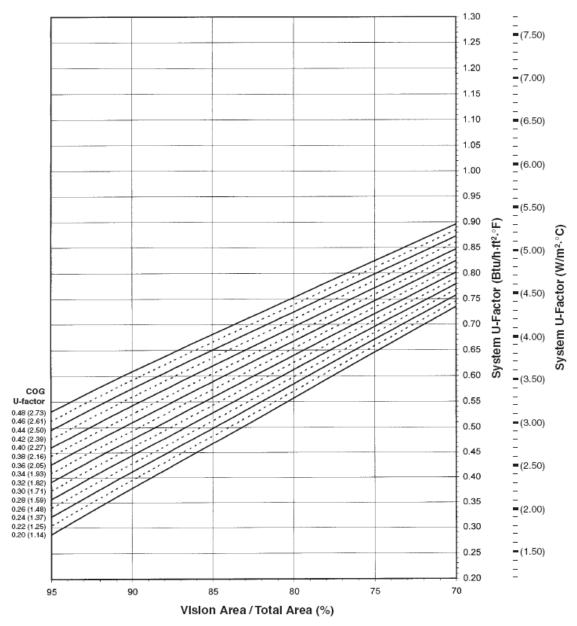


Table 27: U-Value Chart for the Kawneer 1601 Wall System

With a our Trace model now reflecting 50% glass and a wall U-Value of 0.029 the four different curtain wall assemblies were entered in separate alternatives. The results where run and can be seen in Table 28.

	Curta	in Wall						
Model	Total U- Value	SHGC	Cost Per SQFT	Cooling/ Electric	Heating	Total Building Energy Cost	30 year life Cycle cost	Curtain Wall Savings
1601	0.4	0.14	\$ 63.00	\$ 331,785.00	\$ 231,613.00	\$ 563,398.00	\$ 16,373,330.92	0.2%
1602	0.34	0.21	\$ 63.00	\$ 335,951.00	\$ 230,487.00	\$ 566,438.00	\$ 16,455,311.64	-0.3%
1603	0.34	0.14	\$ 63.00	\$ 331,941.00	\$ 230,412.00	\$ 562,353.00	\$ 16,340,894.04	0.4%
1600 UT	0.33	15	\$ 72.50	\$ 332,529.00	\$ 230,238.00	\$ 562,767.00	\$ 16,352,003.16	0.3%

Table 28: Curtain Wall Type Study Results

Cost was also a concern when selecting the two systems. The cost reflected in the fourth column of Table 28 contains the cost for the metal and the glass. It does not has labor included. The glass has a U-Value of 0.22. The costs are not dead nuts accurate but were deemed sufficient for HPR Integrated Designs comparison sake.

The Trace Model showed that the standard 1603 Wall system had the best energy performance although the savings where minimal. Because the cost for this system was the same as all the other standard 1600 wall systems and significantly cheaper than the Ulter Thermal alternative it was selected for our design.

The Ultra Thermal product was not beneficial for us because the double thermal break the product has only shows an affect when dealing with glazing with a super low u-value. HPR Integrated Design did not see any benefit in spending the extra money on either the metal or the improved glazing because, as show in the percent glass study, the load and energy savings by improving the walls total U-Value was minimal.

Once the wall system was selected the structural design performed the necessary structural checks to insure it could be used and the design was finalized.

LEED Energy and Atmosphere

It Is HPR Integrated Design's goal to keep the building on track to earn a LEED Gold rating and part of this means conserving energy. According to the current projects LEED Score Card found in Appendix H, the current design is aiming for at least 5 points for the Energy and Atmosphere credit C.1. This credit is based on the comparison to a base line model created following the procedure laid out in Appendix G of ASHRAE Standard 90.1. The percent improvement is then found by using the blow equation.

$$\%$$
 Improvment = $100 \times \frac{Baseline\ Building\ Performance - Proposed\ Builing\ Performance}{Baseline\ Building\ Performance}$

Since tracking LEED point is a process that starts in design and continues to the building is occupied it is difficult for use to say with certainty what points we would actually be able to achieve. It is HPR Integrated Design's approach to assume the current design will achieve its goal of LEED gold and we will keep track of changes made that could affect the total number of point the arena earns. With this in mind HPR will not be creating a baseline model in accordance to ASHRAE 90.1. Instead we will use the model created for the original design and know that design earned 5 lead points we will be able to determine the energy the baseline model would use.

New Buildings	Existing Building Renovations	Points
12%	8%	1
14%	10%	2
16%	12%	3
18%	14%	4
20%	16%	5
22%	18%	6
24%	20%	7
26%	22%	8
28%	24%	9
30%	26%	10
32%	28%	11
34%	30%	12
36%	32%	13
38%	34%	14
40%	36%	15
42%	38%	16
44%	40%	17
46%	42%	18
48%	44%	19

Table 29: LEED Optimizing Energy Performance Credit

Including all the savings from the façade and the reduction in size of AHU-7 and AHU-8. HPR Integrated design is projected to use 3.9% less energy than the current design will use. This extrapolates out to put out design and 23% energy use than the ASHRAE 90.1 appendix G baseline

model. This would give our design one addition LEED point over the current design. These calculations can been seen below.

Current Design Energy Use =
$$$585,299/yr$$

$$HPR \ Design's \ Energy \ Use = \$562,353/yr$$

$$\frac{\$585,299 - \$562,353}{\$585,299} = 3.9\%$$
 Reduction

$${f 20\%} = 100 imes {{\it Baseline Building Performance - Proposed Builing Performance} \over {\it Baseline Building Performance}}$$

$$\textbf{20\%} = 100 \times \frac{\textit{Baseline Building Performance} - \$585,\!299}{\textit{Baseline Building Performance}}$$

Baseline Building Permance = \$731,624

$$23.1\% = 100 \times \frac{\$731,624 - \$562,353}{\$731,624}$$

It is important to note that the current design was assumed to only be 20% better than the base line model. It the Current design was actually 21% better than the base line out new design could in fact earn 2 more LEED points than the current design.

Lighting

The lighting design for the facade redesign will reinforce the lantern theme of the redesign. To drive home the lantern theme the lighting in the atrium will be mostly an "indirect" delivery system developed by Zumtobel called Miros. This system does two things to achieve the fell HPR wanted; first it delivers a uniform lighting distribution on the atrium floor while providing efficient ambient light to have the entire atrium glowing with bounced light. A secondary use for the system is to hide the lighting delivery system from the exterior, by mounting the projectors on the brick piers and aiming them at the ceiling mounted mirrors located directly above obstructs the view of the lighting system from University Drive as well as the walkways leading up to the main entrance of the building.

The illuminance criteria outlined by the IES 10th edition lighting handbook are as follows:

Horizontal Illuminance 150 lx @ floor

Vertical Illuminance 75 lx @ 5' AFF

Uniformity Emax:Emin <= 2:1

ASHRAE Standard 90.1 section 9 outlines the allowable lighting power density for the atrium space. Lobby spaces are allowed to have a power density of 0.73 watts per square foot. In the case of the atrium that gives a total connected wattage of 2580 watts. Figure 106 below shows a section through the atrium space detailing how the Miros system would be implemented in this space.

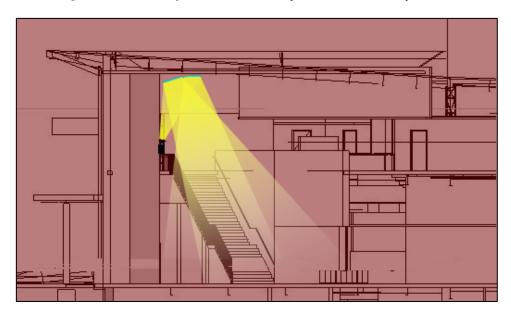


Figure 108: Diagrammatic Section through the Atrium

The Miros system chosen for the atrium is the semi-matte finish with a 30 degree spread. Choosing this option HPR was able to create a solution that was able to meet all of the design criteria. Figure 109 below shows the illuminance values on the surfaces within the atrium. It is important to note that the Miros system does create a hot spot on the system with the spill light that does not strike the mirror. However this is minimized by the distance between the projector and the mirror. In this

solution the projector is mounted at 23' above the main concourse level and the mirror is mounted 2 feet below the ceiling plane of 35' above the main concourse level. Using these mounting heights the distance is reduced to 9' and the maximum illuminance on the ceiling is roughly 750 lux.

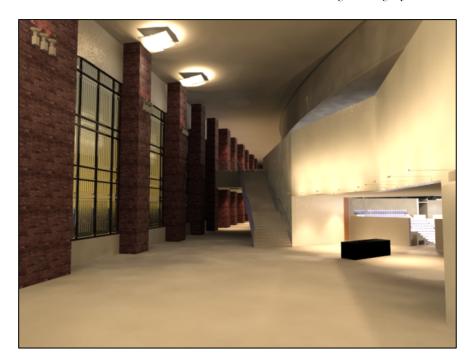


Figure 109: 3DS Rendering of Lighting Solution in Atrium

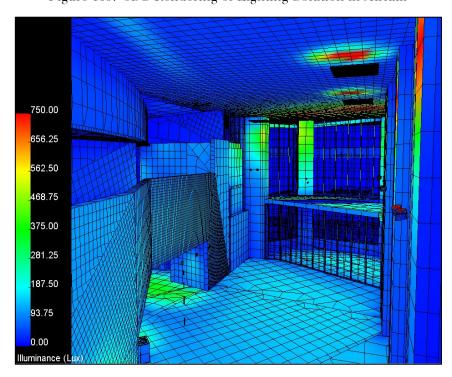
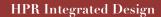


Figure 110: AGI Pseudo Color Rendering of Atrium

The Miros system provides the following illumination levels compared to the design criteria in the following table.

Horizontal Illuminance	150 lx @ floor	153 lx
Vertical Illuminance	75 lx @ 5' AFF	126 lx
Uniformity	Emax:Emin <= 2:1	xx lx


Another important lighting feature of the atrium is the illumination of the showcase wall. This wall is located opposite of the façade and the entrance. An important criteria for the showcase wall will be an illumination level that is 3 to 10 times higher than the ambient illumination in the atrium. To apply this technique to the atrium, HPR is implementing a cantilevered wall washing luminaire mounted at the bottom of the showcase wall. In Figure 109 it can be seen that the showcase wall is illuminated to around 375 lx, which is just over 3 times the ambient illumination provided on the floor.

The last lighting element within the atrium is the area directly above the vestibule space. Contained within the space HPR is proposing the use of hanging banners for another opportunity to showcase the new hockey program. The banners would be illuminated by track mounted fixtures on the piers of the main entrance. As it can be seen in Figure 111 the illumination of this area is 450 lux and above. The illumination of the banners can be seen in Figure 111.

Figure 111: 3DS Rendering Showing the Atrium Lighting Solution

BIM THESIS FINAL REPORT

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

The total connected wattage for the atrium is 3618 watts. This is over the code allowable by 1038 watts, however this space and the other spaces designed for this thesis are all categorized as tradable therefore looking at all three packages there is a net energy savings.

Structural

Structural considerations for the Function package we're limited in scope as the primary driver of this focus was energy, lighting conceptualization and architecture. The structural designer had significant input into the architectural design of both the East façade redesign and the new main and student entrances. This role of the structural designer in the function design package was to facilitate the needs of the mechanical and lighting/electrical designers in the redesign of the atrium and east façade spaces.

Master's coursework was used heavily throughout this enhancement package to assist in the confirmation of façade assemblies and curtain wall selection. Additionally, new main and student entrances were designed in SAP2000 to accommodate for the team's design alternative. The following section will go into more detail about these structural considerations and the role of the structural designer in this capacity.

East Façade Design Input

HPR Integrated Design's design concept for the east façade was to replace the curtain wall that encompasses the entire east face of the building with a more traditional brick pier system consistent with the adjacent walls of the facility. Switching from the lighter curtain wall system to a heavier brick cavity wall assembly required exterior column checks for capacity. Exterior columns were checked as combined loading members for both the axial load from the roof above and the wind loads derived from ASCE 7-10 wind criteria. Sample calculations for the exterior column checks can be found in Appendix H.

The structural designer worked closely with the mechanical designer to redesign the new east façade wall assembly and help in the selection of the new curtain wall system and layout. Through the use of H.A.M. Toolbox, a building enclosure analysis and design tool, the mechanical designer and structural designer confirmed the desired cavity wall assembly would have a desired U-value that would enhance the building's energy performance.

Multiple wall assemblies were investigated for their thermal efficiency including an study into using a block (CMU) back up instead of structural metal studs. Ultimately, the wall assembly matched the typical 1'-4" wide exterior cavity wall with a 6" metal stud backup. Using an u-value derived from HAM toolbox, the mechanical designer fan calculations using Trane Trace. An example of the R-Value Analysis completed by the structural designer can be seen in Figure 110 below. Additional H.A.M. toolbox analyses can be found in Appendix H.

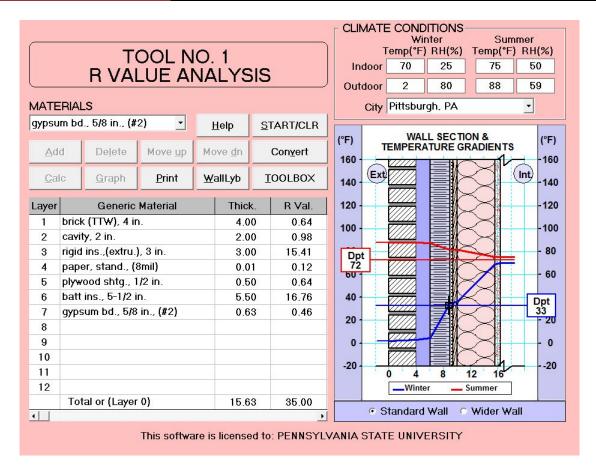


Figure 112: H.A.M. Toolbox R-Value Analysis - Exterior Cavity Wall Assembly

The R-value analysis also allowed the structural designer to verify that condensation issues would occur on the exterior side of the drainage plane. In addition to verification of the R-value, a condensation analysis was also performed using the chosen exterior cavity wall assembly. Figure 113 and 114 below show the condensation analysis for the summer and winter months assuming the location of the building is in Pittsburgh, PA, the closest city within the program.

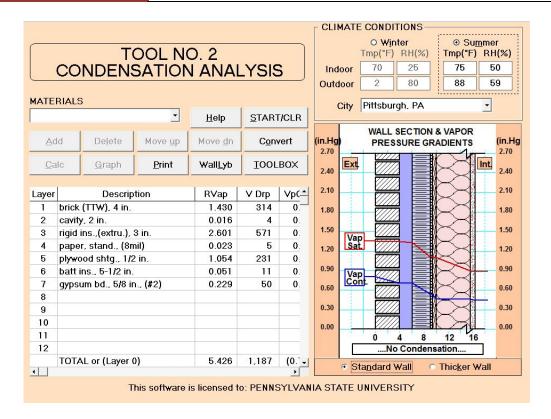


Figure 113: Summer - Condensation Analysis

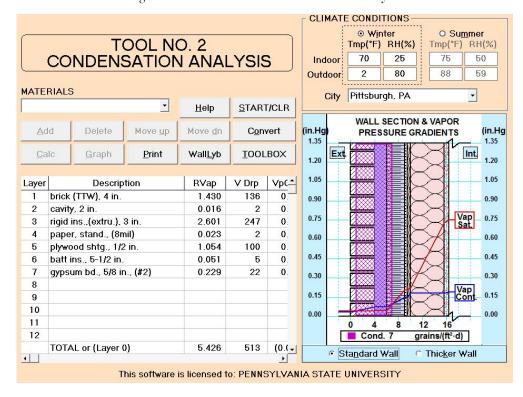


Figure 114: Winter - Condensation Analysis

Condensation analysis for the exterior cavity wall assembly with structural stud backup allowed the structural designer to coordinate with the mechanical designer on required thickness of insulation, location of vapor and air barriers, etc. The analysis showed that the summer months would result in condensation issues as the saturated vapor pressure never is reached. In the winter however, condensation will occur in the wall cavity but on the exterior side of the drainage plane. Analysis on this wall showed that minimal condensation could occur between the exterior brick and mostly in the air space. If the exterior wall is wept correctly and blockages from masonry mortar are avoided in construction, this wall assembly should have no issues with condensation.

These analyses were part of master's level coursework for AE 542—Building Enclosures Science & Design. Although the process was not purely structural in nature, the ability to verify the wall assemblies performance characteristics allowed HPR Integrated Design to move forward with design with the knowledge of an enhanced façade for energy performance. Additional condensation analysis was done in HAM toolbox for thoroughness in design choices and can be found as a part of Appendix H.

Continuing collaborative design with the mechanical and lighting/electrical designers, the curtain wall system was the next major structural consideration for the east façade design focus. After the mechanical designer had selected the Kawneer 1600 wall system, the mechanical designer and structural designer worked together to detail a typical curtain wall assembly. Figure 115 shows the final configuration of a typical curtain wall elevation, finalized through collaborative design.

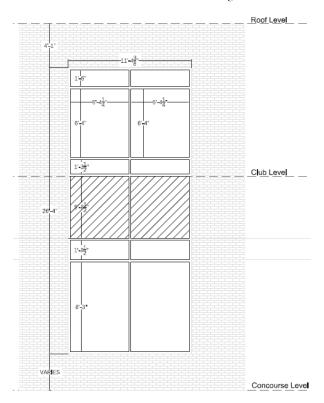


Figure 115: Typical Curtain Wall Elevation

Using the largest pane of glass in this elevation, which is a 8'-4" tall by 5'-4" wide pane at the bottom of the elevation, the structural designer performed analysis on the glazing. Two major analysis checks were conducted: wind strength design per ASTM E1300 and small missile impact analysis per ASTM E2025 for windborne debris considerations.

The analysis confirmed that the ¼" thick laminated glass insulated glass units (IGUs) meet both design criteria and could be used per the Kawneer specifications. Additionally, the structural designer completed design on the structural mullions with the assumption that the Kawneer system had continuous mullions as it was a shop fabricated unitized system. Analysis confirmed that T5 aluminum structural mullions had to be at least 7 mm or approximately 3/8" thick to satisfy both ASTM E1300 and ASTM E2025 design criteria. It is important to note that bearing criteria was not investigated and large missile impact was ignored. Hand calculations for the curtain wall glazing and mullion design can be seen in full in Appendix H.

New Entrance Structural Design

The overall team concept for the function enhancement package was to create spaces that revealed their function through the architecture. Part of the design focus was to increase the prominence of the main and student entrances. The structural designer performed a combination of hand calculations and computer modeling in SAP2000 to design the entrances for gravity forces only. To simplify the design, wind loads were not accounted for directly but the member sizes were conservative in the final design. Canopy framing was also considered purely for minimum live loads per code, conservative snow loads and dead loads. Figure 116 below shows the main entrance structural system and canopy framing.

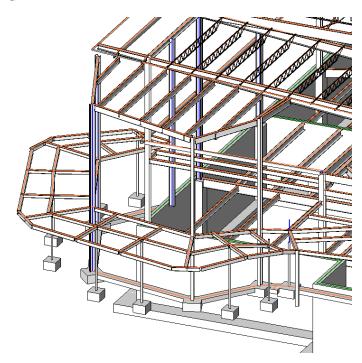


Figure 116: Main Entrance Canopy Framing

The main entrance consists of W10's for canopy framing members, W16's for more economic roof framing members and conservative W14x53 columns that tie into the existing structure system. Posts were added to the design for architectural and to support the canopy system. They consist of HSS6x6x3/8 members, which are conservative for the required capacities. Foundation design was not included as part of this quick design process but were modeled for design authoring purposes only.

Figure 117 shows a 3D view of the new student entrance framing design. The student entrance boost a two story atrium that is 50' wide and is a major architectural change from more modest existing design. Canopy framing for this entrance is again W10 wide flange shapes and W14 columns conservatively sized. Since the student entrance spans nearly 50', W24x94 girders were hand calculated by the structural engineer to take the applied loads of the structure. Foundation design was not taken into account at this location and was modeled solely for design authoring purposes. Sample hand calculations can be found in Appendix H for both the main and student entrances.

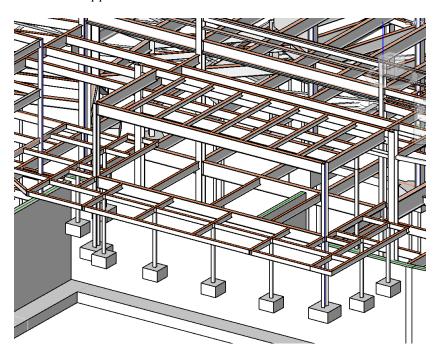


Figure 117: Student Entrance Framing Perspective

Cost & Schedule Impact

The newly designed roof system was designed with the intent to reduce energy consumption by reducing the square footage of glass on the east façade.

Using Quantity Takeoff and costs found in *Craftsman's National Estimator*, the construction manager estimated the façade for the current design and HPR's design. Figure 118 shows an image of the new east façade in Quantity Takeoff.

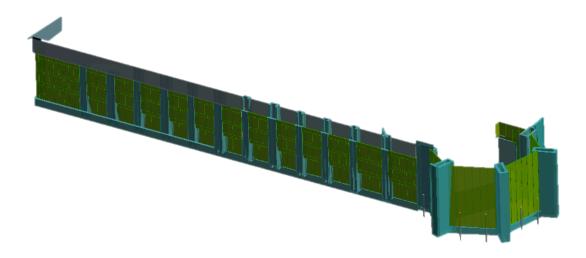


Figure 118: HPR's Proposed East Façade in Quantity Takeoff

The new façade design helps with energy savings, but increases the total construction cost by \$77,575. This is due to the increase in the height of the main concourse walls and the added labor from the external walls. The following changes were made, with increased spending listed first, followed by additional savings.

Increased	Spending

Exterior Wall Material \$115,256

Additional Savings

Glazing \$37,680 (6.6%)

Along with redesigning the façade, HPR focused on enhancing the main and student entrances. The entrances are not very recognizable in the current design. It was important to deliver a more prominent and welcoming entrance for both locations. The following changes were made and estimated in Quantity Takeoff. Increased spending is listed first, followed by additional savings.

HPR Integrated Design

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

Increased Spending

Exterior Wall Material \$115,969

Additional Savings

Glazing \$97,602 (5758.3%)

By enhancing the east façade and the entrances, the overall construction cost is increased by \$95,942. See Appendix H for complete breakdown of differences in cost for this design package. The added material for the Function Package would result in 34 days passed the current project design schedule. The construction manager's new schedule created in the Prominence Package allows only an additional 8 days of construction for this design package.

Package Summary

The main goal of the Function Package was to reduce the building's energy consumption while striving to maintain code compliance. By reducing the square-footage of glass, HPR was able to reduce energy costs by 3.9% and earn one point more than that of the current design.

The secondary goal was to give the building a more grander and recognizable main and student entrances. Where the glass was reduced, brick was replaced. The total increased cost for this package is \$95,542 with an added 8 workdays to the schedule. Design intent for this package was to design an energy efficient building.

HPR Redesign Cost & Schedule Summary

Summary of Packages

HPR Integrated Design has developed three packages that first saved costs, and then enhanced the building features. These packages will give the owner options to enhance the quality of their ice hockey arena. HPR has studied the feasibility study up through the preliminary design, as well case other case studies, while using value engineering to develop these packages. Shown below are the costs impacts of each of the packages. See Appendix F, G, and H for the breakdown of these packages.

<u>Savings</u>	<u>\$ (% Change)</u>	<u>Workdays</u>
Savings Package	\$330,406 (3.4%)	Save 15
Additional Cost		
Prominence Package	\$528,521 (16.4%)	Save 26
Function Package	\$95,942 (<mark>13.5%</mark>)	Add 8

When these packages are added together, a total of \$294,056 is added to the overall budget. With the reconsolidation of the schedule, the project has a new completion date of August 13, 2013, 17 workdays ahead of schedule.

General Conditions

For this project, the construction manager used an overhead and profit markup of 24.8% of the overall \$73 million budget. Based on *Craftsman's National Estimator*, a breakdown of this percentage is shown below.

Total	24.8%
Profit	7.5%
Contingency	2.0%
Direct Overhead	7.3%
Indirect Overhead	8.0%

HPR was able to complete the project 17 workdays ahead of schedule, or 22 calendar days. The result of this showed improved cost savings due to the reduction of indirect and direct overhead costs, a total general conditions savings of \$394,411. The breakdown can be seen below.

HPR Integrated Design

| Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

	% of Budget	<u>Current Design</u>	Reduced Cost	<u>Savings</u>
Indirect Overhead	8	\$5,840,000	\$5,633,722	\$206,228
Direct Overhead	7.3	\$5,329,000	\$5,140,817	\$188,183
			Total	\$394,411 (3.5%)

Final Savings

The overall savings to the owner for HPR's proposed design is \$100,355, and 17 workdays.

APPENDIX A: Index of Figures and Tables

$\underline{Figures}$

Figure 1: Site & Surroundings	
Figure 2: Event Level Floor Plan	
Figure 3: Main Concourse Level Floor Plan	5
Figure 4: Club Level Floor Plan	5
Figure 5: Existing Foundations Systems	6
Figure 6: High Roof Framing Plan	7
Figure 7: Simply Supported Existing Long Span Truss	8
Figure 8: Bracing Long Span Truss	8
Figure 9: Existing Layout for the Arena Lateral Systems	6
Figure 10: Existing AHU Zoning for the Event Level	10
Figure 11: Existing AHU Zoning for the Concourse Level	11
Figure 12: Existing AHU Zoning for the Club Level	11
Figure 13: Established BIM Goals - Actual Project	14
Figure 14: LOD Matrix - Design Development for Actual Project	16
Figure 15: Contractual Language Comparison	16
Figure 16: Thesis BIM Goals	17
Figure 17: Thesis BIM Uses	17
Figure 18: Communication Flow Diagram	18
Figure 19: Weekly Meeting Schedule	19
Figure 20: Bedrock Depth	
Figure 21: 3D View of Bedrock Below Grade	22
Figure 22: Event Level Elevation Proposed Changes	24
Figure 23: 3D Sectional View of South Corner of Arena Bowl	24

HPR Integrated Design

Figure 24:	Sectional View of Reallocated Seating	24
Figure 25:	Existing Typical Sightline Section	28
Figure 26:	Figure 304.3.2 - 2010 ADA Standard	30
Figure 27:	Removed Seating	31
Figure 28:	Typical Sightline Sectional View - Lower Bowl	33
Figure 29:	Proposed Sloped Vomitories	34
Figure 30:	Proposed ADA Sightlines	34
Figure 31:	Proposed Plenum Space	35
Figure 32:	Schematic of Seat Reallocation	36
Figure 33:	Final Design of ADA Seating with Added Seating	37
Figure 34:	ADA Seating - Main Concourse Level Current Design	39
Figure 35:	ADA Seating - Main Concourse Proposed Layout	39
Figure 36:	Lower Bowl Seating Arrangement - Existing	41
Figure 37:	Main Concourse Seating Changes	41
Figure 38:	Proposed Lower Bowl Seating Arrangement	42
Figure 39:	Graphical Representation of Synchronizing of Local Files	43
Figure 40:	BIM Level of Development	44
Figure 41:	Thermostat Templates for Different Spaces within the Arena	45
Figure 42:	Ceiling Plan for Men's Locker Room	46
Figure 43:	Floor Plan for Men's Locker Room	46
Figure 44:	Code - Minimum Exhaust Rates	47
Figure 45:	Table 3 Sensory Pollution Load from 2009 ASHRAE Handbook	48
Figure 46:	Diffuser Selection Table	51
Figure 47:	Diffuser Selection Table	51
Figure 48:	Contamination Distribution for Code Required Ventilation Rate	52
Figure 49:	Contamination Distribution for Calculated Ventilation Rate	53

HPR Integrated Design

Figure 50:	Ramped-Up Vomitorities at ADA Alcoves	58
Figure 51:	Typical Office AGI Pseudo Color Rendering	60
Figure 52:	AGI Pseudo Color Rendering of Women's Locker Room	61
Figure 53:	Clash Detections	62
Figure 54:	Quantity Take Image of Main Arena	63
Figure 55:	Bryce Jordan Center, Penn State	67
Figure 56:	Multi-Sport Complex, Penn State	67
Figure 57:	Beaver Stadium, Penn State	67
Figure 58:	2005 Feasibility Study Drawings	68
Figure 59:	Schematic "Saddle" Roof Design Concept	69
Figure 60:	Partial Workflow Diagram for the Prominence Package	70
Figure 61:	Compton Family Ice Arena	71
Figure 62:	Long Span Truss Profile - Compton Family Ice Arena	72
Figure 63:	Agganis Arena	72
Figure 64:	Long Span Truss Profile - Agganis Arena	73
Figure 65:	Penn State Ice Arena Existing Design	73
Figure 66:	Long Span Truss - Penn State Ice Arena	74
Figure 67:	Existing Transverse Section	75
Figure 68:	Partial Detail H1/A4-14	76
Figure 69:	Long Span Truss Geometry	78
Figure 70:	SAP 2000 Frame Analysis	78
Figure 71:	Axial Load Output - SAP2000 Frame Analysis	81
Figure 72:	SAP2000 Member Check & Legend	83
Figure 73:	SAP2000 Steel Check per AISC360-05/IBC2006	83
Figure 74:	SAP2000 Simplified Lateral Analytical Model	86
Figure 75:	Long Span Truss Member Sizes	87

HPR Integrated Design

Figure 76:	Bridging Trusses in High Roof Framing Section	88
Figure 77:	SAP2000 Supplementary Framing Checks	89
Figure 78:	Detailed Cost Estimate Summary	91
Figure 79:	High Supply, Low Return, & Diffusers	93
Figure 80:	Preliminary Lighting Layout for Main Arena	95
Figure 81:	High Steel with Coordinated MEP System	95
Figure 82:	Finalized Lighting Layout	96
Figure 83:	Pseudo Color Rendering of Main Arena	97
Figure 84:	AGI Rendering Showing Arena Illumination & Model Overlay	98
Figure 85:	AGI Rendering Showing Pseudo Color Illumination Values on Ice	99
Figure 86:	Comparison of Transverse Section through the Arena	100
Figure 87:	Comparison of Existing & Proposed Truss Designs	101
Figure 88:	Deliverable Truss Sections	101
Figure 89:	Current Design Erection Sequence	102
Figure 90:	HPR's Erection Sequence	103
Figure 91:	4D Truss Erection Sequence	104
Figure 92:	4D Steel & Truss Erection Sequence	106
Figure 93:	Site Logistics Plan	107
Figure 94:	South Side Steel Laydown	107
Figure 95:	North Side Steel Laydown	107
Figure 96:	Truss Delivery Logistics	108
Figure 97:	Building Footprint Excavation Logistics	108
Figure 98:	HPR's Proposed Truss System in Quantity Takeoff	110
Figure 99:	East Facade Spaces	114
Figure 100	: Proposed East Facade Elevation	115
Figure 101	: Existing Facade	115

HPR Integrated Design

Figure 102: Re	eser Stadium	.116
Figure 103: Pr	reliminary Modeling in Google SketchUp	.116
Figure 104: Pr	roposed Design for the Main Entrance Showing Lantern Effect	.117
Figure 105: Pr	roposed Design for the Student Entrance	.117
Figure 106: So	outh Facade	.121
Figure 107: Pr	roposed Design for East Facade	.121
Figure 108: Dia	agrammatic Section through the Atrium	.127
Figure 109: 3D	OS Rendering of Lighting Solution in Atrium	.128
Figure 110: AC	GI Pseudo Color Rendering of Atrium	.128
Figure 111: 3D	OS Rendering Showing the Atrium Lighting Solution	.129
Figure 112: H.	A.M. Toolbox R-Value Analysis - Exterior Cavity Wall Assembly	.131
Figure 113: Su	ummer - Condensation Analysis	.132
Figure 114: W	inter - Condensation Analysis	.132
Figure 115: Ty	ypical Curtain Wall Elevation	.133
Figure 116: Ma	ain Entrance Canopy Framing	.134
Figure 117: St	udent Entrance Framing Perspective	.135
Figure 118: HI	PR's Proposed East Façade in Quantity Takeoff	.136
Figure 119: Sa	ample Calculation: Masonry Bearing Wall ASD Design	.168
Figure 120: Bo	oring Points on Site	. 190
Figure 121: St	udent Section - Section "E"	. 196
Figure 122: Ty	pical Section - Continuous Lower Bowl Seating	. 196
Figure 123: Co	onstructability Review	.197
Figure 124: Tv	wo-Way PT Flat Plate - Tendon Layout	. 198
Figure 125: Gr	rove TM9150 - 150-Ton Hydraulic Crane	.242
Figure 126: Gr	rove TM500 - 40-Ton Hydraulic Crane	.246
Figure 127: Po	oor Exterior Cavity Wall Assembly - No Insulation	.255

HPR Integrated Design

Figure 128: CMU Block Backup Exterior Cavity Wall - R-Value Analysis	255
Figure 129: Structural Stud Backup - Exterior Cavity Wall - R-Value Analysis	256
Figure 130: CMU Block Backup - Summer - Condensation Analysis	256
Figure 131: CMU Block Backup - Winter - Condensation Analysis	257
Figure 132: Structural Stud Backup - Summer - Condensation Analysis	257
Figure 133: Structural Stud Backup - Winter - Condensation Analysis	258
<u>Tables</u>	
Table 1: 2010 Feasibility Study Comparisons	25
Table 2: Existing Seating with Price Points	26
Table 3: Existing Seating Capacity per Price Points	26
Table 4: Notre Dame University Ticket Prices	27
Table 5: Profitability Study - Existing	27
Table 6: Accessible Wheelchair Spaces	29
Table 7: Comparison of Seat Capacity & Profitability	37
Table 8: ADA Handicapped Seating - Code Compliance Check	40
Table 9: Ventilation Table	48
Table 10: Ventilation Table	49
Table 11: Two-Way, Post-Tensioned Flat Plate Slab Design Criteria	56
Table 12: Roof Loads for Acoustical Deck Design	77
Table 13: Dead & Live Loads - Frame Analysis	79
Table 14: Windward Wall Wind Pressures	79
Table 15: Side Wall, Leeward Wall, & Roof Wind Pressures	80
Table 16: Partial Hand Calculations for Member Sizing	81
Table 17: Sample Hand Calculations - Combined Loading Members	82
Table 18: Seismic Design Criterion per ASCE 7-10	85
Table 19: X-Direction Seismic Loading - Equivalent Lateral Force Method	86

HPR Integrated Design

Table 20:	Interstory Drift Calculations per ASCE 7-10	87
Table 21:	Sample Calculation - Column Capacity Checks	89
Table 22:	High Roof Framing Cost Estimated - Existing Design	90
Table 23:	Percent Glass Effects on Spaces Adjacent to the Curtain Wall	.118
Table 24:	Percent Glass Effects on Total Energy for Building	.119
Table 25:	Table Ca-1 of the Energy Price Indexes & Discount Factors	.120
Table 26:	Wall Construction Type Study	.122
Table 27:	U-Value Chart for the Kawneer 1601 Wall System	.123
Table 28:	Curtain Wall Type Study Results	.124
Table 29:	LEED Optimizing Energy Performance Credit	.125
Table 30:	BIM Goals	.152
Table 31:	BIM Uses Worksheet	.153
Table 32:	Rock Elevation Averages	. 190
Table 33:	Current Design Excavation Amounts	.191
Table 34:	Event Level Raising Excavation Amounts	.192
Table 35:	Existing Seating Layout	.193
Table 36:	Proposed Alternative Seating Layout	. 194
Table 37:	Price Comparisons	. 195
Table 38:	Two-Way PT Flat Plate Calculations	. 199
Table 39:	Event Level Raising Overall Cost Breakdown	.212
Table 40:	Event Level Current Design Excavation Costs	.213
Table 41:	Event Level Raising Excavation Costs	.213
Table 42:	Event Level Current Design Steel Columns	.213
Table 43:	Event Level Redesign Steel Columns	.214
Table 44:	Event Level Current Design Steel Beams	.214
Table 45:	Event Level Redesign Steel Beams	.215

HPR Integrated Design

Table 46:	Event Level Current Design of "To be Modified" Precast Stadia Dimensions	215
Table 47:	Event Level Current Design of "To be Modified" Precast Stadia Cost	215
Table 48:	Event Level Redesign of "Modified" Precast Stadia Dimensions	216
Table 49:	Event Level Redesign of "Modified" Precast Stadia Cost	216
Table 50:	Event Level Current Design of "To be Modified" Arena Seating	216
Table 51:	Event Level Redesign of "Modified" Arena Seating	216
Table 52:	Event Level Current Design Concrete Arena Steps	217
Table 53:	Event Level Redesign Concrete Arena Steps	217
Table 54:	Current Design Excavation Workdays	217
Table 55:	Event Level Raising Excavation Workdays	218
Table 56:	Flat Roof Snow Load Calculations	219
Table 57:	Summary of Snow Drift Load Calculations	220
Table 58:	General Wind Load Design Criteria	220
Table 59:	Velocity Pressure Coefficients	220
Table 60:	Design Criteria for Trusses X8 & X9 - Scoreboard Rigging	227
Table 61:	Design Criteria for Trusses X4 & X13 - Worse Case Span (End)	227
Table 62:	Member Sizing - Trusses Along X8 & X9 - Scoreboard Rigging	228
Table 63:	Member Sizing - Worst Case Scenario Truss	229
Table 64:	Notre Dame Case Study - Truss System Estimate	235
Table 65:	Boston University Case Study - Truss System Estimate	236
Table 66:	Existing Design Penn State Ice Arena - Truss System Estimate	240
Table 67:	HPR's Proposed Design - Truss System Estimate	241
Table 68:	Overall Redesign Crane Analysis	241
Table 69:	Redesign Roof System Baseline vs. HPR's Method - Crane Analysis	242
Table 70:	Main Arena Roof System Cost Breakdown	249
Table 71:	Roof System Current Design - End Truss Size	249

HPR Integrated Design

Table 72:	Roof System Current Design - Inside Truss Size	.249
Table 73:	Roof System Current Design - Trusses & Purlins	.250
Table 74:	Roof System Redesign Truss Size	.250
Table 75:	Roof System Redesign Trusses & Purlins	.250
Table 76:	Roof System Redesign Shoring	.251
Table 77:	Roof System Current Design Catwalk	.251
Table 78:	Roof System Redesign Catwalk	.251
Table 79:	Façade & Entrances Cost Breakdown	.259
Table 80:	East Façade Material Cost Breakdown	.259
Table 81:	Main & Student Entrances Cost Breakdown	.259
Table 82:	Façade & Entrance Schedule Impact	.259
Table 83:	East Façade Schedule Impact	.259
Table 84:	Entrances Schedule Impact	.260
Table 85:	HPR's Project Redesign Schedule	.261
Table 86:	HPR's Project Overall Redesign Schedule Impact	.262
Table 87:	4D Steel & Truss Erection Schedule	.263
Table 88:	Steel & Truss Erection Short Interval Project Schedule (SIPS)	.264
Table 89:	Light Loss Factors	.297

APPENDIX B: Measures for Success

Event Level Relocation

- Coordination amongst all of the disciplines throughout project design.
- Reduction in flooring system to allow for maximum plenum space while balancing optimum relocation of the entire event level.
- Reduction in cost for the redesign flooring system versus the existing flooring system.
- Reduce the cost of materials and resources needed for excavation.
- Reduce schedule by reducing amount of bedrock needing to be excavated.
- Optimize duct size balancing energy, cost, and space.
- Reduce the lighting power density of the level below ASHRAE Standard 90.1 Section 9.
- Reduce the cost of the electrical distribution system by optimizing the routing of conduit & wiring through the building.
- Ensure systems designed are achieving points necessary on LEED score card for Gold Certification.

Main Arena Roof System Design

- Coordination amongst all of the disciplines throughout project design.
- Along with the façade redesign, create an iconic roof system.
- Roof system design increases or maintains constructability.
- Reduce cost with reduction of long span truss member size.
- Structural design maintains performance of lateral system with new truss system.
- Structural design allows for efficient lighting and mechanical designs while fully integrated.
- Determine proper crane size and amount of cranes needed to install roof system.
- Create a site logistics plan that allows smooth flow of operations.
- Create a controllable system that can be turned down when arena is not occupied which leads to a reduction of energy use.
- Reduce the lighting power density of the space below ASHRAE Standard 90.1 Section 9.
- Meet or exceed the lighting design guidelines laid out by the NCAA.
- Create an electrical distribution system that is versatile and provides the space with functional & logical points of connection.
- Ensure systems designed are achieving points necessary on LEED score card for Gold Certification.

<u>Façade Redesign</u>

- Coordination amongst all of the disciplines throughout project design.
- Along with the main arena roof system design, create an iconic façade design.
- Reduction or maintain the exterior column sizes while accommodating new façade materials with appropriate connections.
- Reduce thermal load to spaces along the east façade.
- Create more efficient air distribution in the lobby and concourse.

HPR Integrated Design

- Reduce project cost and energy cost by selecting optimum glazing panels for architectural and energy performance.
- Reduce resources needed for installation by changing the system of the façade from glass curtain wall to brick and glazing.
- Improve schedule for installation of new design.
- Reduce the lighting power density of the spaces below ASHRAE Standard 90.1 Section 9.
- Create an iconic building facade that balances architecture and engineering.
- Ensure systems designed are achieving points necessary on LEED score card for Gold Certification.

APPENDIX C: BIM Execution Planning

BIM Goals

Priority (1-3)	Goal Description	Potential BIM Uses
1 - Most Important	Value Added Objectives	
1	Optimize Building System Efficiencies	Structural Analysis, Lighting Analysis, Energy Analysis
		Energy Analysis, Sustainability (LEED) Analysis, Existing
		Conditions Modeling, Design Reviews, Design
1	Improve energy efficiency of the facility	Authoring
1	Optimize Scheduling and Sequencing	3D Coordination, 4D Coordination
		Cost Estimation, 3D Coordination, Structural Analysis,
		Lighting Analysis, Energy Analysis, Sustainability (LEED)
1	Value Engineering and life cycle cost evaluations	Analysis, Design Authoring
		3D Coordination, Design Authoring, Design Reviews,
1	Eliminate potential conflicts during construction	Existing Conditions Modeling, Record Modeling
	IPD Design process through collaborative	
1	engineering and architectural design	Design Authoring, Design Reviews, 3D Coordination
	Utilize and learn state of the art industry	
	technologies and capabilities in an education	Design Authoring, 3D Coordination, 4D Coordination,
1	setting	Structural Analysis, Lighting Analysis, Energy Analysis

Table 30: BIM Goals

BIM Uses Worksheet

BIM Use	Value to Project	Responsible Party	Value to Resp Party	R	pabi atin	g	Additional Resources / Competencies Required to Implement	Notes	Proceed with Use
	High / Med / Low		High / Med / Low		Competency	Experience			YES / NO / MAYBE
Record Modeling	HIGH	Contractor Facility Manager Designer	MED HIGH LOW	2 1 0	2 0	1 0	Capable of 3D model manipulation and making changes to contract model		YES
Cost Estimation	MED	Contractor	HIGH	2	1	1	3D model estimating software, integration of inhouse data base		YES
4D Modeling	HIGH	Contractor MEP Engineers Structural Engineer	HIGH MED MED	3 2 2 2	2 2 2	2 2 2	Need training on latest 4D modeling software, scheduling software, clash detection	High value to owner due to phasing compllications, use for phasing & construction	YES
3D Coordination	HIGH	Architect MEP Engineer Structural Engineer Contractor Subcontractors	MED MED MED HIGH HIGH	3 3 3 3	3 2 2 3 3	3 2 2 3 3	Coordination software required Conversion to Digital Fab required	Contractor to facilitate coordination Modeling learning curve possible	YES
Design Reviews	HIGH	Architect	HIGH	3	3	3	3D Model manipulation	Reviews to be from design model, no additional detail required	YES
Design Authoring	HIGH	Architect MEP Engineer Structural Engineer	HIGH HIGH	3 3	3 3 3	3 3	3D modeling software	Develop 3D model, potential to represent value engineering in early design	YES
Existing Conditions Modeling	MED	Architect Structural Engineer MEP Engineer	HIGH HIGH MED	2 2 2	2 3 2	1 3 2	Requires lasor survey experience and software	Develop existing conditions model from photos taken and lasor surveying	YES
Structural Analysis	HIGH	Structural Engineer Contractor	HIGH MED	3 2	3	3	Structure load calculation software	Determine value engineering alternative strength & support materials	YES
Lighting Analysis	HIGH	Lighting Engineer	HIGH	3	3	3	Determine daylighting needs		YES
Energy Analysis	HIGH	MEP Engineers	HGIH	3	3	3	Minimize heat gain for hockey arena		YES
Sustainability (LEED) Analysis	MED	MEP Engineers Contractor	HIGH HIGH	3	2	1	LEED analysis software		YES

Table 31: BIM Uses Worksheet

APPENDIX D: MAE Thesis Requirements

Construction MAE

The construction management MAE requirements were satisfied through knowledge gained in the following courses:

- AE 597G Building Information Modeling Execution Planning
- AE 598C Sustainable Construction Project Management.
- AE 570 Production Management in Construction

As the BIM Execution Plan Manager for HPR Integrated Design, along with my teammates, I was able to create and implement a successful BIM Execution Building Information Modeling (BIM) Execution Plan for this project. The plan described the process for how the flow of the project would progress, the BIM uses for the scope of the project, and the coordination efforts of the team.

Sustainable Construction Project Management skills were used to keep Green in mind and strive for LEED Gold Certification. While there was not enough time in the semester for the team members to focus on every category of the LEED scorecard, efforts were made in each design aspect to maintain or exceed the current design's score. It was important for the team to incorporate Value Engineering in every decision that was made in order to deliver the highest quality product for the budget allotted. Individual members of the team brainstormed on the first design package in trying to find a way to reduce wasted space in the plenum of the event level by raising portions of the event level. After much deliberation, I was able to formulate a way to reduce the excavation by suggesting the entire event level be raised while keeping the main concourse locked in place. While maintaining the architect's intent, we were able to reduce the excavation cost and reallocate those savings into our roof design package. By reducing the excavated material, my team was able to reduce excess hauling away of the material, reducing vehicle exhaust into the atmosphere.

Skills developed in the Production Management course were used to successfully create a short interval project schedule for the erection of steel, erection of the truss system, and installation of precast stadia. The new truss system increased in weight by 34.5%, requiring an additional 18 workdays passed the truss completion date. By reconsolidating the schedule and creating a new erection sequence, I was able to complete the truss erection 26 workdays sooner than that of the baseline schedule.

Mechanical MAE

The mechanical MAE requirements were satisfied by the completion of a CFD analysis on the Men's Locker Room. The goal of the study was to determine more accurately the required amount of ventilation the locker room would need. To perform this analysis the mechanical design drew on knowledge gain in his Indoor Air Quality class, AE 552, and his CFD modeling class, AE 559. Fundamental skills gained in AE 552 where used to calculate a ventilation rate that would allow for 80% of the room occupants to be satisfied with the rooms odor levels. This value turned out to be roughly 2.5 CFM/sf, five times greater than that required by code.

BIM THESIS PROPOSAL

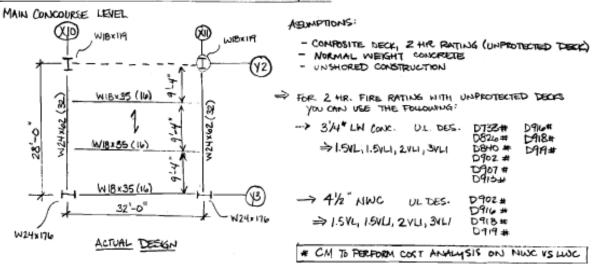
Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

Because of this a CFD model was created an analysis run to determine what exactly the implications were to the two different ventilations rates. The room diffuser layout was designed, the diffusers selected (Titus). The model ran for 5000 iterations, used a K-E turbulence model and a hybrid differencing scheme. The results can be seen in both Appendix F and in the Savings Package under "Mechanical Design."

Structural MAE

The structural MAE requirements for the BIM Thesis were satisfied through using knowledge obtained from AE 542—Building Enclosure Design & Science and AE 597A—Computer Modeling of Structures throughout the yearlong capstone thesis project. The use of knowledge gained from AE 597A was used heavily throughout the computer modeling process to obtain more accurate results and a deeper understanding of the numbers the computer analytical software was spitting out. The class allowed for more accurate design of members, obtaining critical loading information for long span truss design and design checks.

Coursework from AE 542 Building Enclosure Science & Design was also very helpful throughout the thesis. HPR was able to perform H.A.M. Toolbox façade assembly condensation analysis and R-value checks for more accurate energy performance analysis. The structural design also was able to design & analyze the curtain wall system for strength considerations and resistance to wind borne debris. Finally, AE 537 Building Failures was another class that was used in the thesis for input on best design practices against failures mostly in the façade redesign process.


APPENDIX E: Engineering Calculations

Structural Hand Calculations

Savings Package Hand Calculations

Alternative Flooring Study - NWC vs. LWC

VERIFICATION OF EXISTING COMPOSITE FLOOR SIGTEM

*NOTE: LIGHTWETGHT CONCRETE WAS NOT USED ON ACTUAL PROJECT DUE TO AVAILIBILITY AND CRACKING PROBLEMS ASSOCIATED WITH CONC.

```
- SPACING = 9'-4"
```

- 3+ SPAN -> UNSHORED CONSTRUCTION
- -> BASED ON SOI MAX UNSHORED REQUIREMENTS ONLY: (+= 4.50")
- -> COULD NOT USE LIST OR LISTLY DECK (1584116 -> 94 MAX SOI SPAN)
- -> CODED USE 24L1 19 (SDI MAX SPAN = 10'-0" > 9'-4") => WILL NOT USE (SEE BERLAD)

* NOTE: ACTUAL PROJECT DID NOT USE 2VIL DECK BECAUSE THERE ARE CLEAR SPANS OF 12"-6" IN OTHER BAYS AND SO THEY USED DUFFORM DECK.

-> COULD NOT USE 2VLI DECK (2VLIG -> 11-0" < 12-0" MAY SOI SPAN)

```
-> [COULD DIE BYLLIB] (SDI MAY SPAN = 13'-3" (3+ FRAN) > 12'-6")

LIGHTEST GAUGE THAT COULD BE USED
```

*NOTE: SYLIB DECK WAS THE ACTUAL DECK USED ON THE PROJECT : OK

CHECK LWC : DECK SYSTEMS: (+=3.25)

- MAX SPACING: 12-6" (9-4" IN OUR BAY)
- 3+ SPAN UNSHORED CONSTRUCTION
- + BASED ON SOI MAX UNSHIPED REQUIREMENTS ONLY:
 - → COULD NOT USE 1.5 VL OR 1.5 VL DECK (1.5 VL) (6 -> 11'-0" × 12'-6") * COULD WORK FOR THIS BAY
- → COULD USE 2VLI DECK (2VLI8 → 13'-3" >12'-6")

CHECK BOTH DECKS FOR STREASTH REQUIREMENTS:

LOADS: SUPERIMPOSED LIVE LOAD = UNFACTORED LL + SI DL

=> 3VL118 DECK W/ 4.5" NWC TOPPING => 12"+6" MAX SPACING: 168 PSF > 115 PSF .. OK/ ⇒ 24LI IB DECK W/3'4" LWC TOPPING ⇒ 12'-6" MAX SMCING: 121 PSF > 115 PSF : OKY

SUMMARY FOR CM: COST ANALYSIS:

USE 34LIB DECK W/ 4/2" HAK TOPPING (6-750") NWC:

THEORETICAL CONC. YOLUME: 1.85 YD > 100 FT2 (A = 32'x28' = 896 FT2) => 16.576403

0.500 FT /FT > 448 fts

RECOMMENDED REINF : 6x6 = WZ.1 X HZ.1

USE 24LIB DECK W/ 34" LWC TOPPING (+=5.25") twc:

THEORETICAL CONC. VOLUME . 1.31 YO3/100 FT? -> 11.71/403 O.354 FT/FT -> 317.18 ft.

6x6= W1.4 x W1.4 RECOMMENDED REINF.:

34118 W/ 4.5" NAJC CONS. (t=7.50") ⇒ 75 PSF 24118 W/ 3.25" LUX CONS. (t=5.25") ⇒ 42 PSF NOTE LOADS OF TWO SYSTEMS:

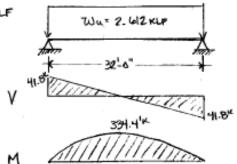
VERIFY INTERLOR BEHMS USING NIWC:

LOADS:

DECK + CONC. = 75 PSF (VULCEAFT MANUAL) ST DEAD LOAD = 15 PSF DEAD:

SW (FRAMING) = 10 PSF

ACTUAL PROJECT ICO PSF


LIVE : (NOT REDIXED EVEN THOUGH KLAT = 597.12 A2 > 400 A2) 100 PSF LIVE LOAD =

Wu= 1.2(100 x 9.33) + 1.6 (100 x 9.33) = 2.612 KLF

20n= 129 k

L ASSUME SIMPLY SUPPORTED BEAM)

* ASSUME a = 1.00" Y2 = 7.5" - 100" = 7.0" > WI8×35 ØMx= 382'k (4,=7, 42=7)

CHEAR STUD STRENGTH: * USE 34" \$ SHEAR STUD

$$Q_{n} = \begin{cases} 0.5 \text{Asc} \sqrt{f'cE_{a}} = 0.5 \left(\pi \left(0.15\right)^{2}\right) \sqrt{4 \, \mu 5^{1.5} / 4} = 20.1 \text{K} \\ \text{Rg} Rp \text{Asc} F_{u} = 1.0 \left(0.6\right) \left(\pi \left(\frac{0.15}{2}\right)^{2}\right) \left(65\right) = 17.2 \text{K} \longrightarrow \text{DECK PERFENDICULARE} \\ \text{(CONTROLS)}$$

OF SHEAR STUDS:
$$\frac{2Qn}{Qm} = \frac{129 \, \text{K}}{17.1^{\text{K}}} \times 2 = 16 \text{ SHEAR STUDS}$$

$$b_{\text{eff}} = \left| \frac{32' \times 12}{8} = 48'' \times 2' = 96'' \leftarrow \text{controls} \right|$$

$$\frac{1}{2} \left(9.38 \times 12 \right) = 56'' \times 2 = 112''$$

CHECK UNSHORED STRENGTH:

CHECK WET CONC. DEFLECTION:

$$W_{\text{we}} = 75(9.33) + 35 = 0.735 \text{ KLF}$$
 $\Delta_{\text{wc}} = \frac{5(0.785)(32^4)(1728)}{384(29000)(510)} = 1.172^4$
 $\Delta_{\text{wc},\text{max}} = 32(12)/240 = 1.40^4$
 $\Delta_{\text{wc},\text{max}} = 32(12)/240 = 1.40^4$

CHECK LL DEFLECTION:

$$2R$$
 LL DEFLECTION:
 $2R$ LL DEFLECTION:
 $2R$ LL $= \frac{5(0.933)(32^4)(1728)}{384(29000)(1030)} = 0.737^4$
 $2R$ LL $= \frac{5(0.933)(32^4)(1728)}{384(29000)(1030)} = 0.737^4$

REDESIGN COMPOSITE BEAMS W/ LINC

24L118 DECK W/ 34" LING TOPPING (t= 5.25") = 42 PSF SELF IMPOSED DEAD LOAD = 15 PSF SW FRAMING = 10 PSF LOADS: DEAD LOADS:

TOTAL (UNFACTORED DL)= 67 PSF (9-4") = 626 PLF = 0.626 KLF

LL=100 PSF (9'-4") = 934 PLF = 0.934 KLF LIVE LOADS:

Wa= 1.2 (0.626) + 1.6 (0.934) = 2.246 KLF

Mu= 2.246 (322) = 287.44 1k

* Assume a=1.00

Y2 = 5.25"- 1-29" = 4.75" (Y1=4.5") (Y2=7) ⇒ WI8×35 ØMA= 358'K > 287.44'K

£0n= 129K

CHECK SHEAR STRENGTH: # USE \$4" & SHEAR STUD

Qn= 17.2K (DECK 1. I WEAK STUD/RIB, LUC-fc=4KS)

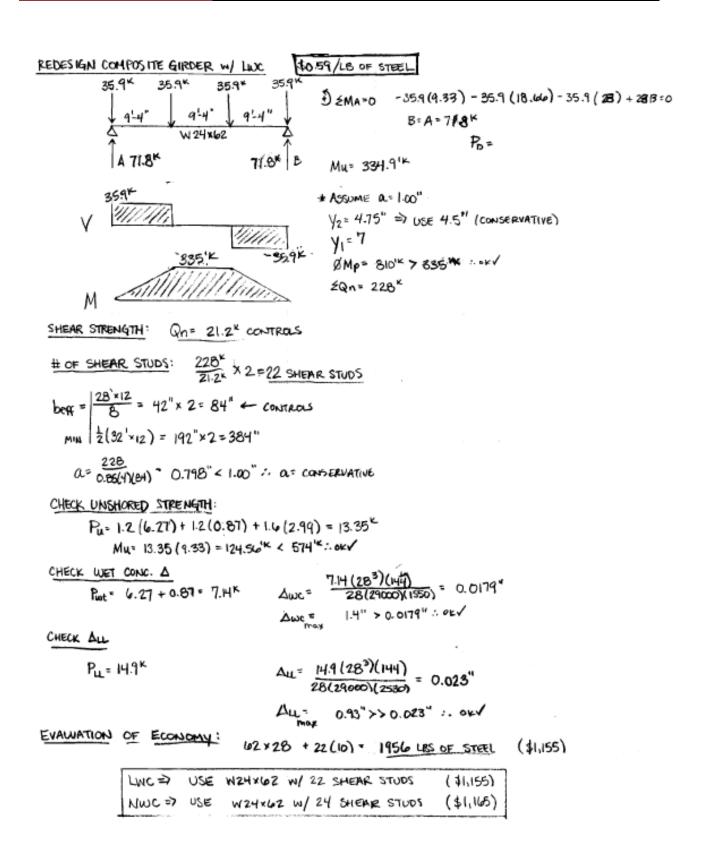
OF SHEAR STUDS = 129" X 2 = 16 STUDS

CHECK beff beff = 96" controls

CHECK Q: Q= 0.395" < 1.0: a = conservative (same as nuc)

CHECK UNSHORED STRENGTH:

Øh Mp= 249'K TUL = 1.2 (42 x 9.33)+1.2 (35) + 1.6 (20x 9.33) = 0.8 (KLF Mu= 103.81 "K \$ 249 "K 1.0K√


CHECK WET CONC. DEFLECTION:

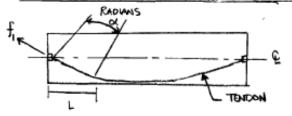
WWF= 42(9.33)+35= 0.427 K4F AW= 0.681" < 1.60" : OK√

CHECK IL DEFLECTION : ALL = 0.737" < ALLMAY = 1.87" TORY

EVALUATION OF ECONOMY: 35 19/FT × 32' + 10(16) = 1280 LES OF STL.

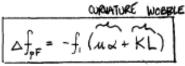
LWC ⇒ WIBX35 W/16 SHEAR STUDS ⇒ WI8x35 W/ 16 SHEAR STERS NWC

COMPARISO	ON OF ECONOMY FOR TYP. BAY	* ASSUMPTION :	\$0.59/LB OF STEEL
NMC ⇒	(3) WIBX35 W/ IL SHEAR STUDS	= 3840 485	= \$ 2265.60
	(2) W24 ×GZ W/24 SHEAR STUDS	= 3952 LBS	= \$ 2331.68
	4000 PSI NWC ON SYLLIB DECKING	÷.	= \$5117.07
			\$9,7H.35


SUMMARY

=> COST SAVINGS = \$445.91 ≈ 4.6%

Curved Tendon Research


NAWY, EDWARD G., "PRESTRESSED CONCRETE: A FUNDAMENTAL APPROACH," 5THED., 2010, PRENTICE HALL: UPPER SADDLE RIVER, NJ. P. 85-88.

*APPLIES TO BOTH SECTION AND PLAN?

*Assumption: Prestress force between the start of the curved portion and its and is small (\$152)

WHERE f : STRESS OF JACKING FORCE

U = FRICTION BETWEEN TENDON

AND THE DUCT DUE TO CHEWATURE

X = CURVATURE (IN RADIANS)

K= COEFFICIENT OF FRICTION

BETWEEN TENDON SURROUNDING

CONCRETE

L = LENGTH OF TENDON

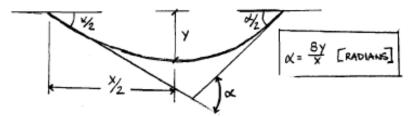


TABLE 3.7: WORRIE AND CURVATURE FRICTION COEFFICIENTS

Type of Tendon	Worde Coefficient K feir Foot	CURVATURE COEFFICIENT	
→Tendons in Flexible Metal Sheathing			
- WIRE TENDONS	6.0010-0.0016	0.15-0.25	
- 7 wire strands	0.0006 = ∂.0020	0.15 - 0.25	
- High strength bars	0.0001 - 0.0006	6.08 - 0.30	
TENDONS IN RIGID .			
- 7-wire strands	0.0002	0.15-0.25	
MASTIC - COATED TENDONS			
-WIRE TENDONS AND	0.00% - 0.00 20	0.05-0.15	
7 WIRE STRANDS			
PREGREASED TENDONS			
- WIRE TENDONS AND	0.0003 - 0.0020	0.05-0.15	
7 WIRE STRANDS			

CONTINUOUS CURVED TENDON:

X * ASSUME TENDONS ENCASED IN FLOXIBLE METAL SHEATHING

> NOT ACCEPTABLE

X * ASSUME MASTIC - COATED TENDONS:

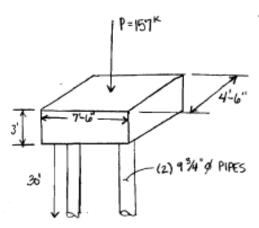
⇒ NOT ACCEPTABLE

SPUT SLAD - CURVED TENDON:

X * ASSUME TENDONS ENCASED IN FLEXIBLE METAL SHEATHING

> NOT ACCEPTABLE

*ASSUME MASTIC-COATED TENDONS:


N= 0.15

K = 0.062

Sample Calculation: Micropile Capacity Check

CAPACITY CHECK- MICROPILE FOUNDATIONS

Type of PILE: 9

fr = 4000 PSI

REFERENCE:

DAS, B. PRINCIPLES OF FOUNDATION ENGINEERING," THED., CENGAGE LENGHING: STAMFORD,

Steel Piles:

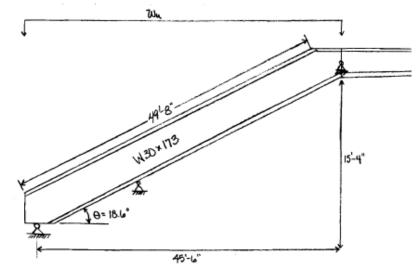
ESTIMATING PILE CAPACITY:

FROM GEOTECH REPORT:

- CASING IS FILLED WITH NEAT CEMENT GROUT > 5000 PSI
- MAX CAPACITY = 300k/PILE

RECOMMENDED:

- IF P ₹ 350K : -> 51/2"Ø PILES
 - - 120K/PILE MAK. CAPACITY
 - 12' MIN. EMBED.
 - 20 / PILE LAT. @ 15° FROM VERT.


- ~→ 7°793⁄4″ ø
 - 300 PILE MAX. CAPACITY
 - 20' + 28' MIN, EMBED.
 - 50 ×/PILE LAT @ 15° FROM VERT.

FROM GEOTECHNICAL REPORT:

- → BORING LOG NO. B-22 (CLOSEST TO FOUNDATION) LO IF P>900K: 4 2.5 OF FILL
 - LO 15' OF BEDROCK -> WEATHERED "DOLOMITE" (LIMESTONE)
- go = Qu (Ng+1) -> PILES RESTING ON BEDROCK

Sample Calculations: Sloped Lower Bowl Steel Design & Analysis

Sloped Rackers Capacity Check - LFRD Analysis

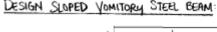
LOADING: DEAD LOAD = 75 PSF (PRECAST STADIA)
5 PSF (SEATING)
173 PLF (BEAM SW)
LIVE LOAD = 100 PSF

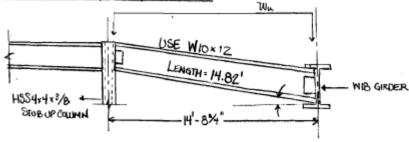
SPACING: 32'-0"

LC: 1.2 + 1.6L = 1.2((75+5)(22)+173)+1.6(100(32)) = 8.40 keV $Wu = (\frac{49.67}{45.5})(8.40) = 9.17 \text{ keV}$

Mu= 766 1K (FROM STADD) < ØMn= 2280'K ∴ OK/

Vu= 154 (FROM STAAD) < \$Vh = 598 " OKY


ALLOW. $\Delta_{LL} = \frac{1}{240} = 33 (12)/240 = 1.65''$ $\Delta_{LL} = \frac{5(3.49)(33')(1728)}{384(2900)(8230)} = 0.39'' < \Delta_{LL,ALLOW} = 0.67'$

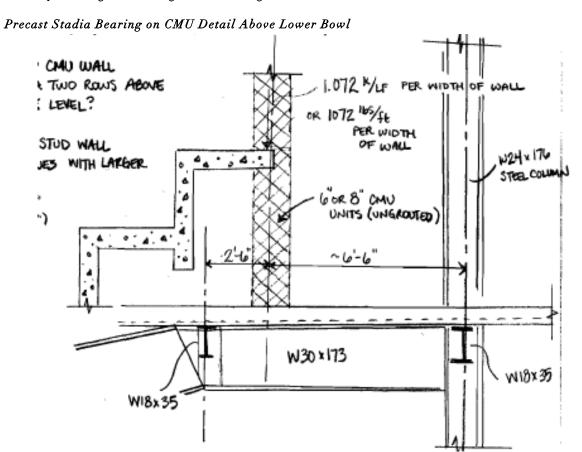

Augus. ATL = 2/300 = 33 (12)/502 = 1.10"

Δπ. = 5(6.46)(33 ")(1728) = 0.72" < 1.10" = Δπ, Augus: OKV

- W30×173 SLOPED RACKERS WORK!

Sample Calculation: Sloped Vomitory Steel Design - Non-Composite Design - LFRD Design

$$M_{K} = \frac{0.628 (14.82^2)}{8} = 17.2^{1K}$$
 $V_{L} = \frac{0.628 (14.82)}{2} = 4.65^{K}$
MINIMAL


DEFLECTION CRITERION:

$$\Delta_{L} = \frac{5(233)(14.82^{4})(1728)}{384(2900)} = 0.741^{4}$$
 Ix = 11.8 in⁴

$$\Delta_{T} = \frac{5(0.210)(14.82^{4})(1728)}{384(29000)I} = 0.494^{4}$$
 $I_{X} = 15.9 In^{4} \rightarrow Controls$

USE WIOXIZ FOR SLOPED VOMITORY STEEL BEAMS

Masonry Bearing Wall Design - ASD Design

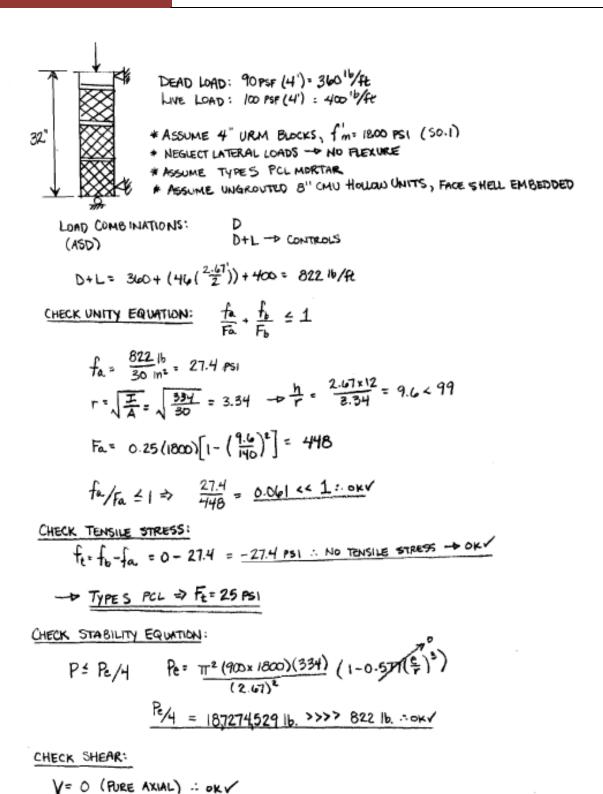
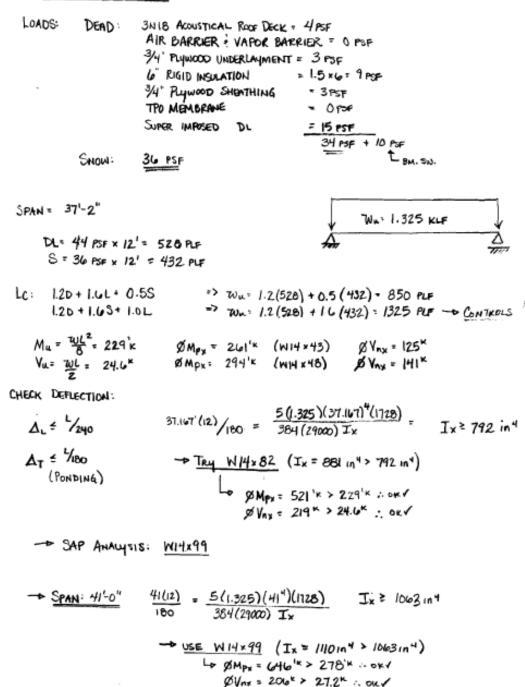
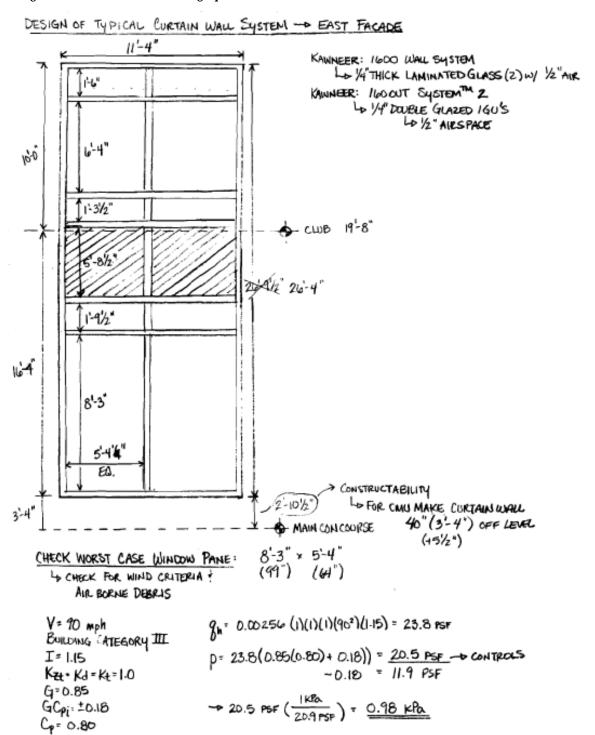



Figure 119: Sample Calculation: Masonry Bearing Wall ASD Design

Prominence Package Hand Calculations

Sample Calculations - Supplementary Framing Purlin Design


DESIGN OF A ROOF PURLIN

Function Package Hand Calculations

Curtain Wall Glazing Design - Strength and Wind Borne Debris

Glazing & Structural Mullion Design per ASTM E1300 and ASTM E2025

DESIGN GLAZING:

PANEL WIDTH = 64"
PANEL HEIGHT = 99"

FOR 1/4" LAMINATED GLAZING:

USING ASTM E1300

GLASS Type Factor (GTF) = 0.9 (ANNEALED LAMINATED)
NON FACTORED LOADS (NFL) = 1.10 (44 × 99 × 14 THK, LAMINATED GLASS)

* ASSUME IGNORE LOAD SHARING FACTOR (LS)

LOAD RESISTANCE (LR) = NFL × GTF × 122

LR= 1.1 × 0.9 = 0.99 KPa > 0.98 KPa :: 1/4" LAMINATED ANNOHED

GLASS WORKS FOR

BOTH KAWNEER SLETIONS!

4 FOR WIND CRITERIA.

* Key Assumptions For CALCULATIONS:

- O PUB LAMINATE IS USED BETWEEN LITES
- @ FOUR SIDES SIMPLY SUPPORTED
- 3 Pb (FAILURE RATE) = 8/1000 0.008

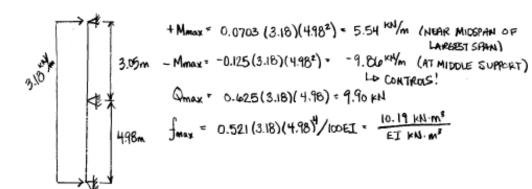
@ 3- SECOND DURATION LOADING

CHECK 14" LAMINATED GLAZING FOR IMPACT CRITERIA:

L-D "SACRIFICAL PLY DESIGN" -- DESIGN/CHECK OUTER LITE TO BE ARE TO WITHSTAND A 29 STEEL BALL (SMALL MISSILE) IMPACT AT 39.6 % or 130 % Lo Pb = 0.008 OF INNER PLY CREAKAGE

→ According to chart in Astm E 2025
Let 1/4" Thick. Lites of Annealed Laminated Glass
Lull withstand Small Missile Impact Criteria.

* OK FOR Pb-0.008 AND Pb-0.001

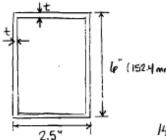

DESIGN STRUCTURAL MULLIONS: * ASSUME TO ALIMINUM MULLIONS
Lo 2.5" WIDEX 6" DEEP

WIND DESIGN PRESSURE = 0.98 KPa

MULLION LENGTH = 26'-4"

TRIBUTARY WIDTH OF PANEL = 5'-4" (64") = 1.6256m

UNIFORM LOAD ON MULLION = 0.36 KPa (1.6256m) = 1.59 KN/m × 2 = 3.18 KN/m



FOR TO AWMINUM: On 62,000 KN/m3 (AXIAL) Ob= 69,000 KN/m3 (BENDING)

OT = 37,000 KN/m (SHEAR)
OL 117,000 KN/m (BEARING)

ALLOWABLE DEFLECTION FOR A MULLION OR TRANSOM:

* ASSUME UNIFORM WALL THICKNESS ON ALL CROSS SECTION SIDES

BENDING Obending =
$$\frac{M}{S} = \frac{Mc}{I}$$

(9 N/mm² = $\frac{M}{Sreq} = \frac{9.86 \times 10^{12} \text{ N·mm}}{Sreq}$

(8 Sreq. $\geq 142,900 \text{ mm}^2$

 $142,900 \leq \frac{1}{12} (152.4) (163.4)^{3} - \frac{1}{12} (152.4-2t) (163.4-2t)^{3}$ $76.2 \leftarrow 152.4 (6'')/2$ 9.BE7 = (152.4 -2t)(63.4 -2+)

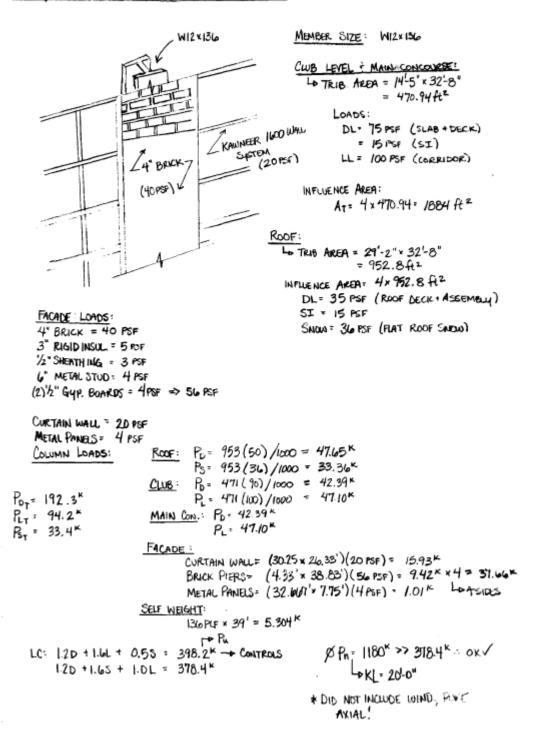
- Try 5mm

(63.4 mm)

CHECK SHEAR:

$$T_{\text{max}} = \frac{3}{2} \frac{\text{Y}}{\text{A}} \rightarrow 37 \,\text{M/m}_{\text{R}}^2 = 1.5 \left(\frac{9900}{\text{A}}\right)$$
 Aregd = 401.35 mm²

$$A = (152.4)(163.4) - (142.4)(53.4) = 2058 \,\text{mm}^2 \ge 401 \,\text{mm}^2 : \text{ OK FOR SHEAPS}.$$

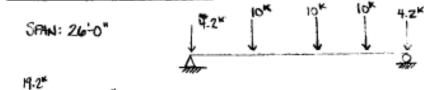

CHECK DEPLECTION:

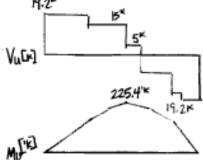
TRY 7mm STRUCT. MULLION THICKNESS

-> 7 mm MULLION PASSES SHEAR & BENDING BY INSPECTION! * DID NOT CHECK EEARING CRITERIA - OUT OF SLOPE!

Sample Calculation: Exterior Column X15-Y7 Capacity Check

VERIFY EXTERIOR EAST FACADE COWMN X15-Y7


Sample Calculations - Main & Student Entrance Steel Design


MAIN ENTRANCE:

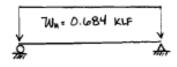
DESIGN ROOF BEAMS: (WORST CASE)

$$\Delta = \frac{5(0.704)(28.33^{4})(1728)}{384(2909) I_{x}}$$
 Ix \(\frac{1}{2} 373 \text{ in }^{4}

DESIGN ROOF EDGE BEAM:

DESIGN OF NEW ENTRANCE - ROOF FRAMING MEMBERS

SPAN: 17-6" SPACING: 540/2" Loado:

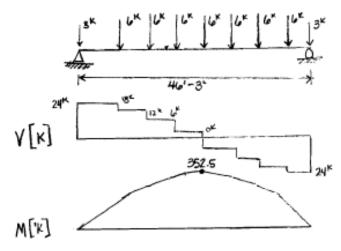

D= 34 PSF (3N18 ROOF DECK ASSEMBLY)

= 15 PSF (SUPERIMPOSED DL)

S = 36 PSF

LC: 1.20 + 1.65 + 1.0L

= 1.2(49)+1.6(36)= 116.4 PSF x 5.875'= 0.684 KLF


Δn. = 17.5x12/3ω = 0.583" (ALLOWABLE)

$$\Delta = \frac{5(0.684)(17.5)^{4}(1728)}{584(29000)}$$
 I_x $\geq 85.4 \text{ m}^{4}$

→ USE WOX28

Ix= 98.0114 > 85.4 in4 ØMn= 102 K>> 26.2 " OVn= 68.9K >> 6.0K

DESIGN NEW GIRDER - STUDENT ENTRANCE

Δ= <u>5(1.04)(46.25</u>4)(1728) 384(2900) Ix *ASSUMED A WILL BE APPROX. A UNIFORM LOAD DIAGRAM

-- USE W24 x94 Ix = 2700 in = 2397 in 4 . OK/ OMn = 953'K > 352.5'K. OKU 64n = 376x>> 24k : 0x/

Mechanical Calculations

Trane Trace Load Calculations Based of the DD Drawings

System Checksums
By ACADEMIC

Variable Volume Reheat (30% Min Flow Default)

ES	He		67.6			0.0		0.0				Heating			1,129		0	0 640		5 195		9 1,323		-	0	0	0			KS		He		0.29			
TEMPERATURES	Cooling	55.0	75.8	75.8	79.4	0.0	0.0	0.0			AIRFLOWS	Cooling		2,080	3,895	89,5		900	900	195	1,129	4,08	1,09			F	s			ENGINEERING CKS		Cooling	23.1	1.00	341.09	341.47	5
TE		SADB	Ra Plenum	Return	Ret/OA	Fn MtrTD	Fn BldTD	Fn Frict						Diffuser	Terminal	Main Fan	Sec Fan	Nom Vent	AHU Vent	IIJul	MinStop/Rh	Return	Exhaust	Rm Exh	Auxiliary	Leakage Dwn	Leakage Ups			ENG			% OA	ctmit	cfm/ton	ft*/ton	HILL TO SERVICE STATE OF THE PERSON STATE OF T
				Percent	Of Total	(%)		0.00	0.00	000	0.00	6.43	17.12	0.00	0.00	0	13.89	37.44			-11.27	-7.57	-62.36	-81.19		0.00	45.64	0	79.39	-2.47	13.79	7.40	0.00		0.00	0.00	
IL PEAK	Mo.Hr. Heating Design			Coil Peak	Tot Sens	Btu/h		0	0	0	0	-5,860	-15,601	0	0	0	-12,665	-34,126			10,272	6,900	56,840	74,013		0	-41,607	0	-72,372	2,253	-12,572	-6,744	0		0	0	
HEATING COIL PEAK	MoMr. He	OADB: 11		Space Peak	Space Sens	8tu/h		0	0		0	-5,860	-7,098	0	0	0	-12,665	-25,623			8,368	6,900	56,840	72,108		-3.028	0	0	-72,372								
							Envelope Loads	Skylite Solar	Skylite Cond	Roof Cond	Glass Solar	Glass/Door Cond	Wall Cond	Partition/Door	Floor	Adjacent Floor	Infiltration	Sub Total ==>		Internal Loads	Lights	People	Misc	Sub Total ==>		Celling Load	Ventilation Load	Adj Air Trans Heat	OviUndr Sizing	Exhaust Heat	OA Preheat Diff.	RA Preheat Diff.	Additional Reheat		Underfir Sup Ht Pkup	Supply Air Leakage	
EAK	18			Percent	Of Total	(%)		0	0	0	8	7	2	0	0	0	3	15		=.	9	80	99	8			0	0		0		-			-		
CLG SPACE PEAK	Mo/Hr: 7 / 18	OADB: 87		Space	Sensible	Btu/h		0	0	0	6,662	1,313	2,115	0	0	0	2,617	12,707			8,368	6,900	56,840	72,108		954	0	0		0							
O				Percent:	Of Total	(%)		0	0	0	3	7	 m	0	0	0	9	13			7	10	4	28		0	29	0	0	0	Ť	0	0	0	0	0	
	Mo/Hr: 7/15	OADBAVB/HR: 91/74/101		Net	Total	Btu/h		0	0	0	3,940	1,313	4,586	0	0	0	8,496	18,335			10,272	13,300	56,840	80,413		0	39,213	0	•	0	-940	0	0	0	0	0	
OIL PEAK	Mov	OADB/WB/F		Plenum	Sens. + Lat	Btu/h		0	0	0	0	0	2,496			0		2,496			1,905	0		1,905	ļ	-964	0				-940		0	0		0	
COOLING COIL	Peaked at Time:	Outside Air:		Space	Sens. + Lat.	Btu/h		0	0	0	3,940	1,313	2,090	0	0	0	8,496	15,839			8,368	13,300	56,840	78,508		964	6	•		0							
•	Peaked	8					Envelope Loads	Skylite Solar	Skylite Cond	Roof Cond	Glass Solar	Glass/Door Cond	Wall Cond	Partition/Door	Floor	Adjacent Floor	Infiltration	Sub Total ===>		Internal Loads	Lights	People	Misc	Sub Total ==>		Celling Load	Ventilation Load	Adj Air Trans Heat	Dehumid. Ov Sizing	Ov/Undr Sizing	Exhaust Heat	Sup. Fan Heat	Ret. Fan Heat	Duct Heat Pkup	Underfir Sup Ht Pkup	Supply Air Leakage	

z	Ē.	55.0	0.0	11.0		0.0	0.0	
SELECTIO	Capacity Coil Airflow Ent MBh cfm °F	1,129	0	900		0	0	
EATING COIL SELECTION	Capacity	-49.7	0.0	-43.6		0.0	0.0	-93.3
HE/		Main Htg	Aux Htg	Preheat		Humidif	Opt Vent	Total
	38					0	9	0
,,	glass #					0	280	0
AREAS	Gross Total	3,899	0	0	0	0	2,800	0
	ø	loor	art	Int Door	Y.	100	Vall	Ext Door
L				_	_	<u> </u>	^	_
	WB/HR gr/lb			0.0	_		>	_
	ve DB/WB/HR					<u> </u>	_	_
	Leave DB/WB/HR			0.0			^	_
		55.0 53.1 57.8	0.0 0.0 0.0	0.0 0.0			>	
	F gr/lb	55.0 53.1 57.8	0.0 0.0 0.0	0.0 0.0 0.0			>	
ECTION	F gr/lb	55.0 53.1 57.8	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0			_	
COIL SELECTION	F gr/lb	3,808 79.4 65.0 70.9 55.0 53.1 57.8	0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0			_	
COOLING COIL SELECTION	F gr/lb	3,808 79.4 65.0 70.9 55.0 53.1 57.8	0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0			_	

Total Capacity ton MBh 11.4 137.0 0.0 0.0 11.4 137.0

Main Clg Aux Clg Opt Vent

PSU ICE ARENA
____BIM__PSU_ICE_ARENA.tro

TRACE® 700 v6.2.6.5 calculated at 01:49 PM on 02/24/2012 Alternative - 1 System Checksums Report Page 1 of 26

Project Name: Dataset Name:

System Checksums
By ACADEMIC

Variable Volume Reheat (30% Min Flow Default)

Peaked at Time: Outside Air:													
Outside	Time:	MofHr	MoHr. 7/13		Mo/Hr: 9 / 13	/13			ting Design			Cooling	Heating
	e All.	CADBIWBINK: 897 /47 102	89//4/10	7	CAUS: 81	-		CAUB: 11			SADE Ra Plenum	75.8	65.1
	Space	Plenum	Net	Percent	Space	Percent		Space Peak	Coil Peak	Percent	Return	75.8	65.1
Ser	Sens. + Lat.	Sens. + Lat	Total	Of Total		Of Total		Space Sens	Tot Sens	Of Total	RetioA	79.2	31.3
Į	Bruth	Rhith	Rhith	1767	н	170		Bhith	Bhilli	(%)	Fn MrTD	0.0	0.0
Envelope Loads				ALL I		40	Envelope Loads			(0/)	Fn BldTD	0'0	0.0
Clodita Colar	0						Clodes Coles		•	000	En Brion	00	0
Skylite Cond			0		00	00	Skylte Cond		00	800	LU FIICE	9.5	9
Roof Cond		6.917	6.917	2	0	0	RoofCond		-31.501	13.01			
Glass Solar	65,988	0	65,988	18	88,704	43	Glass Solar	0	0	000	¥	AIRFLOWS	
Glass/Door Cond	13,708	0	13,708	4	2,684	Ī	Glass/Door Cond	-76,794	-76,794	31.71		Palloo	Monting
Wall Cond	137	1,452	1,590	0	61	0	Wall Cond	-436	4,860	2.01		2000	in part
Partition/Door	0		0		0	0	Partition/Door	0	0	00.0	Dimuser	8,200	2,838
Floor	0		0	0	0	0	Floor	0	0	0.00	Terminal	9,285	2,938
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	0	0	0	Main Fan	9,285	2,93
Infiltration	23,719		23,719	7	3,881	2	Infiltration	-36,991	-36,991	15.27	Sec Fan	0	_
Sub Total ==>	103,553	8,369	111,921	31	95,330	47	Sub Total ==>	-114,221	-150,146	62.00	Nom Vent	2,327	1,834
				*0*0							AHU Vent	2,327	1,834
Internal Loads							Internal Loads				IIJul	569	56
Lights	24.970	2.911	27,881	80	24.970	12	Lights	24.970	27,881	-11.51	MinStop/Rh	2,938	2,938
People	87,600	0	87,600	24	47,715	23	People	47,715	47,715	-19.70	Return	9,855	3,50
Misc	36,348		36,348	0	36,348	9	Misc	36,348	36,348	-15.01	Exhaust	2,897	2,40
Sub Total ==>	148.919	2.911	151.829	42	109.034	23	Sub Total ==>	109.034	111.944	-46.22	Rm Exh	0	
											Auxiliary	0	0
Ceiling Load	2,361	-2.361	0	0	112	0	Celling Load	-13,914	0	0.00	Leakage Dwn	0	_
Ventilation Load	0	0	96,950	27	0	m	Ventilation Load	0	-119,174	49.21	Leakage Ups	0	
Adj Air Trans Heat	•		•	0	0	0	Adj Air Trans Heat	0	0	0			
Dehumid, Ov Sizing			•	0			Ov/Undr Sizing	-61.787	-61.787	25.51			
Ov/Undr Sizing	0		0	0	0	0	Exhaust Heat		13,089	-5.40	NENGIN	FNGINFFRINGCKS	
Exhaust Heat		-2,677	-2,677	7		·	OA Preheat Diff.		-23,883	986			
Sup. Fan Heat			0	0		-5	RA Preheat Diff.		-12,223	5.05		Cooling	Heating
Ret. Fan Heat		0	0				Additional Reheat		0	0.00	% OA	25.1	62.4
Duct Heat Pkup		0	0	0		-					cfmff	1.05	0.33
Underfir Sup Ht Pkup			0	0			Underfir Sup Ht Pkup		0	0.0	cfmton	311.21	
Supply Air Leakage		0	0	0			Supply Air Leakage		0	0.00	ft*/ton	297.63	
											Btuhr-ft	40.32	-27.27
Grand Total ==>	254,832	6,242	358,024	100.001	204,476	100.001	100.00 Grand Total ==>	-80,888	-242,179	100.00	No. People	183	

z	Ē.	55.0	11.0	0.0	
SELECTIO	Coil Airflow cfm	2,938	2,327	00	
TING COIL	Capacity	-129.4	-112.8	dif 0.0 0 0.0 ent 0.0	-242.2
HEA		Main Htg Aux Htg	Preheat	Humidif Opt Vent	Total
Г	38			0 8	0
	Glass			3,669	0
AREAS	oss Total	08,8	0 0	7,321	
		Floor	Int Door	Roof	Ext Door
	œ .		_		
	VB/H gr/ft	200	0.0		
	ve DB/WB/H	52.3 54.7	0.0		
	Leave DB/WB/H	55.0 52.3 54.7	0.0 0.0		
	IBHR Leave DB/WB/H	72.9 55.0 52.3 54.7 0.0 0.0 0.0 0.0	0.0 0.0 0.0		
N	er DB/W B/HR Leave DB/W B/H	65.4 72.9 55.0 52.3 54.7 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0		
ECTION	Enter DB/WB/HR Leave DB/WB/H	79.2 65.4 72.9 55.0 52.3 54.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0		
COIL SELECTION	Coll Airflow Enter DB/WB/HR Leave DB/WB/H cfm °F °F gr/lb °F °F gr/lb	9,082 79.2 65.4 72.9 55.0 52.3 54.7 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0		
COOLING COIL SELECTION	Sens Cap. Coll Airtiow Enter DB/WB/HR Leave DB/WB/H MBh cfm °F °F gr/lb °F °F gr/lb	242.1 9,082 79.2 65.4 72.9 55.0 52.3 54.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0		
COOLING COIL SELECTION	I Capacity Sens Cap. Coll Airflow Enter DB/WB/HR Leave DB/WB/H MBh cfm 'F 'F gr/fb 'F gr/fb 'F gr/fb	28.8 358.0 242.1 9,082 79.2 65.4 72.9 55.0 52.3 54.7 F	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	358.0	

Main Clg Aux Clg Opt Vent

TRACE® 700 v6.2.6.5 calculated at 01:49 PM on 02/24/2012 Alternative - 1 System Checksums Report Page 5 of 26

PSU ICE ARENA
___BIM__PSU_ICE_ARENAIRO Project Name: Dataset Name:

System Checksums
By ACADEMIC

Variable Volume Reheat (30% Min Flow Default)

	ö	DLING C	COOLING COIL PEAK			CLG	CLG SPACE PEAK	PEAK			HEATING	HEATING COIL PEAK			TEMPERATURES	ATURE	co.	_
ď	Peaked at Time:	ime:	Mo	MoHr. 7/13			Mo/Hr: 7 / 11	111			Mo/Hr:	Mo/Hr: Heating Design				Cooling	Heating	9
	Outside Air.	Air.	OADBAVB	OADBAWB/HR: 89 / 74 / 102	102		OADB: 84	4			OADB: 11	=		SADB	unu	75.7	8 8	0,1
		Space	Dispuim	Net	Dorrant		Space	Darrant			Snace Deak	Coil Beak	Percent			75.7	8 8	
	Sen	Sens. + Lat.	Sens. + Lat	Total				Of Total			Space Sens				ند.	79.2	40.2	. 0
_	I	Btuth	Btu/h	Btufh		1	Btu/h	(%)			Btu/h	1		En MirTD	ę	0.0	0	0
Envelope Loads	- 50							Ī	Envelope Loads	Loads		1		_	ē	0.0	0	0.0
Skylite Solar		0	00	00			00	00	Skylite Solar	Solar	00		0.00	0 Fn Frict	=	0.0	0	0.0
Skylite Cond		0 0	200	2	ì	ĺ		20	Skylle	Cond	0.0][
Glass Solar		165 223	9,080	165,223	17		229.798	39	Glass Solar	Solar		-22,035			AIRFL	AIRFLOWS		
Glass/Door Cond	puc	42 788	0	42.788	ì		22 948	4	Glassof	Glass/Door Cond	-231 729	-231 729						
Wall Cond		4,013	5,809	9,822			4,064	-	Wall Cond	puc	-14,322					Cooling	Heating	in in
Partition/Door	,	0		0	0	-	0	0	Partition/Door	n/Door	0		0.00	0 Diffuser	-	100,02	8	8,071
Floor		0		0	0		0	0			0		00.00		lei	26,651	8	8,071
Adjacent Floor		0	0	0			0	0	Adjace	Adjacent Floor	0			0 Main Fan	an	100'07	8	1/0
Infiltration		65,283		65,283			16,056	en	Infiltration	uo	-106,436	•		7 Sec Fan	9	0		0
Sub Total ==>		277,308	10,405	287,712	28		272,865	46	Sub To	Sub Total ==>	-352,487	-385,772	2 59.40	0 Nom Vent	ent	6,690	3,5	3,982
														AHU Vent	ent	6,690	3,5	3,982
Internal Loads									Internal Loads	oads				line.		1,638	1,6	1,638
Lights		88.055	16.170	104.224			88.055	15	Lights		88.055	104.224		4 MinStop/Rh	p/Rh	8,071	8,0	8,071
People		288,460	0	288,460			174.273	8			174,273		3 -26.15	_		28,284	6	9,703
Misc		46,137		46,137	S.		46,137	8		1	46,137	1		2 Exhaust	t t	8,323	5,6	5,615
Sub Total ==>		422,651	16,170	438,821	4		308,464	53		Sub Total ==>	308,464	324,634	4 -48.72	2 Rm Exh	-	9		9
			1,											Auxiliary	ıry	0		0
Ceiling Load		6,402	-6,402	0	9		5,581	Ē	Celling Load	pad	-12,650			_	eakage Dwn	0		0
Ventilation Load	P	0	0	265,950	23	\	0	0	Ventilation Load	n Load	0	-258,712	38.83	=	Leakage Ups	0		0
Adj Air Trans Heal	leat	٥		0	0		0	0	Adj Air Trans Heal	ans Heat	0			0				
Dehumid, Ov Sizing	guizing			•	,).			Ov/Undr Sizing	Sizing	152,219	Ť	_	4				
Ov/Undr Sizing	_	0		0			0	0		Heat		8,371			ENGINEERING CKS	RING CI	(3	
Exhaust Heat			-6,279	-6,279					OA Preheat DIT	at DIT.		-131,196	_	g (•	Cooling	Hootin	-
Sup. Fan Heat			•	•	، د				RA Preheat DIII.	at DIT.		-61,427		7 2		26.1	40.3	200
Ret. Fan Heat			00	00	00				Additional Reheat	II Reheat		-	0.00			0.90	0.27	2 1
Hoderfft Sun Hi Dien	4040		•		, c				Ilendorffr	Indeed Sun Li Dien			000			224 20		_
Supply Air Leakage	kade		0	• •	, 0				Supply	Supply Air Leakage			000			358.78		
The state of the s	-														24	32.45	22.08	9
Grand Total ==>		706.361	13.893	986.204	100.00		586.910	100.00	100.00 Grand Total ==>	<== R	-208.891	-666.320	0 100.00		ople	709	7.07-	P.
														=				
			COOLING	COOLING COIL SELECTION	ECTION						AREAS	,,		HEATING	HEATING COIL SELECTION	LECTIO	_	
	Total	Total Capacity	Sens Cap.	Coll Airflow	Enter	Enter DB/WB/HR	Ť.	Leave	Leave DB/WB/HR	0"	Gross Total	Glass		Co	poscity Coll.	Airflow	Ent	Lva
	ton	MBh	MBh	mlo	ų,	ų.	gr/lb	¥.	F grilb			ff (%)		•	MBh cfm	cfm		i.
Main Clg	82.2	986.2	669.2	25,073		66.2	0.77		47	Floor	29,486		Main Htg	_	-355.9	8,071		95.1
Aux Clg	0.0	0.0	0.0	0		0.0	0.0			Part	0		Aux Htg		0.0			0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0 0.0	Int Door	00		Preheat	7	-324.1	069'9	11.0	55.0
										EAT								

TRACE® 700 v6.2.6.5 calculated at 01:49 PM on 02/24/2012

0.0

0.0

0 99 0

PSU ICE ARENA
___BIM__PSU_ICE_ARENA.tre

Project Name: Dataset Name:

System Checksums
By ACADEMIC

Variable Volume Reheat (30% Min Flow Default)

Peak															
_	Peaked at Time:	Mov	Mo/Hr. 7/14		Mo/Hr: 7 / 13	7/13			MoMr	MoMr: Heating Design	sign				Heating
	Outside Air.	OADBAVB/H	OADBAVB/HR: 91 / 74 / 102	05	OADB: 89	œ.			OADB	=			SADB Ra Plenum	75.8	70.4
	Space	Plenum	Net	Percent	Space	Percent			Space Peak		Coll Peak P	Percent	Return	75.8	70.4
	Sens. + Lat.	Sens. + Lat	Total	Of Total	Sensible	Of Total			Space Sens		Tot Sens O	Of Total	Ret/OA	83.0	25.8
	Btuff	Btu/h	Btu/h	(%)	Btu/h	(%)			8tu/h	4	Btu/h	(%)	Fn MtrTD	0.0	0.0
Envelope Loads						l	Envelope Loads	spe		P			Fn BldTD	0.0	0.0
Skylite Solar	00	00	00	00	00	00	Skylite Solar	lar			00	0.0	Fn Frict	0.0	0.0
Boof Cond				9		00	Boof Cond			1	00	88			
Gass Solar	35,648		35,648	. 4	44.316	12	Glass Solar				0	000	AIR	AIRFLOWS	
Glass/Door Cond	11,416	0	11,416	7	9,683	3	Glass/Door Cond	or Cond	-51.486		-51,486	8.59			
Wall Cond	3,336	3,933	7,268	-	3,505	-	Wall Cond		-10,900		-24,422	4.07	3	Cooling	Heating
Partition/Door	0		0	0	0	0	Partition/Door	Joor	0	_	0	0.00	Diffuser	17,030	4,558
Floor	0	,	0	0	0	0	Floor		0		0	0.00	Terminal	17,030	4,558
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	Floor	0		0	0	Main Fan	000'71	4,000
Infiltration	64,873		64,873	œ	26,276	7	Infiltration		-110,733		-110,733	18.46	Sec Fan	0	0
Sub Total ===>	115,273	3,933	119,205	4	83,780	22	Sub Total ==>	î	-173,119		-186,641	31.12	Nom Vent	8,299	3,424
						-	and in second						AHU Vent	8,299	3,424
Internal Loads							Internal Loads	SD					Infil	1,705	1,705
Lights	90,070	20,074	110,144	5	90,070	54	Lights		90,070			-18.37	MinStop/Rh	4,558	4,558
People	289,350	0 0	289,350	8	172,468	94	People		172,468			-28.76	Return	18,732	6,260
Miso	20.02		717,07	V	20,02		Misc		20.07	h	20,717	5.45	Exhaust	100,01	0,120
Sub Total ==>	400,137	20,074	420,211	25	283,254	92	Sub Total ==>	î	283,254		303,328	-50.58	Rm Exh	n	,,
	-	1	ĺ	-		776			4 000		•	0	Auxiliary	•	0 0
Ventilation Load	2887	286/-	314 000	27.0	8,006	70	Ventilation Load	peo	0,800		222 435	37.00	Leakage Dwn		9 0
Adi Air Trans Heat				5 0	0	00	Adi Air Trans Heat	S Heat			0	0	reavage ohe		,
Debumid Ou Sixing				9			Oullinds Bising	-	226 323		226 382	20.42			
Outlinds Or olding	9				٩		Exhaust Heat	ļ.	000'007	7-	20,000	25.00	-	200	١,
Exhaust Heat	0	-8 641	-8 641	9 -	0	>	OA Preheat Diff	ı i		. 23	236 203	30.00	ENGINE	ENGINEERING CKS	•
Sup. Fan Heat			0	0			RA Preheat Diff	E C		7	-19 209	3.20		Cooling	Heating
Ret. Fan Heat		0	0	0			Additional Reheat	eheat			0	0.00	% 0A	48.7	75.1
Duct Heat Pkup		0	0	0		-							cfm/ft*	0.53	0.14
Underfir Sup Ht Pkup	dn		0	0			Underfir Sup Ht Pkup	Ht Pkup			0	0.00	cfm/ton	241.91	
Supply Air Leakage		0	0	0			Supply Air Leakage	eakage			0	0.00	ft*/ton	456.66	
													Btu/hr-ft	26.28	-18.83
Grand Total ==>	523,402	7,374	844,782	100.00	375,040	100.00	100.00 Grand Total ==>	î	-122,339		-599,707	100.00	No. People	697	
		COOLING	COOLING COIL SELECTION	CTION					AREAS		F	뿔	HEATING COIL SELECTION	SELECTION	
	Total Capacity	Sens Cap.	Coll Airflow	Enter D	WB	Leave	Leave DB/WB/HR	ŏ	Gross Total	88	_		Capacity C	Capacity Coll Airflow	Ent Lvg
	ton MBh	MBh	cfm	Ŀ.	°F gr/lb	u.	°F gr/lb			# (%)	3		MBh	cffr	· L
Main Clg	70.4 844.8	519.8	16,835	83.0 69.8	9.68 89.6	55.0 54.2	34.2 62.2	Floor	32,148		Mal	Main Htg	-203.4	4,558 55	55.0 95.5
		9 6						101					200		1
opt Vent	0.0	0.0	0	0.0	0.0 0.0	0.0 0.0	0.0	Int Door	00		Pre	reheat	402.1	8,299 11	11.0 55.0
Total 7	70.4 844.8							Roof	0		0	Humidif	0.0	0	0.0 0.0
								Wall	6,300	2,460 3		Opt Vent	0.0		
								Ext Door	0	0	0 Tot	Total	-605.4		

TRACE® 700 v6.2.6.5 calculated at 01:49 PM on 02/24/2012 Alternative - 1 System Checksums Report Page 7 of 26

PSU ICE ARENA
___BIM__PSU_ICE_ARENA.rc

Project Name: Dataset Name:

System Checksums
By ACADEMIC

Variable Volume Reheat (30% Min Flow Default)

Protect Art		S	COOLING COIL PEAK	OIL PEAK			CLG	CLG SPACE PEAK	EAK			HEATING COIL PEAK	3 COIL F	EAK		TEM	TEMPERATURES	s	
Second Color Seco	Pe	eaked at	Time:	Mof	Hr. 7/15			MoMr: 7 /	18			MoM	r. Heating	Design			Cooling	Heat	Bu
Sheet		Outsi	de Air.	OADBWB/H	IR: 91/74/1	5		OADB: 87				OAD	=======================================			SADB Ra Plenum	75.6	o 60	5.0
Section Column			Space	Plenum	Net	Percent			ercent			Space Pea		Coil Peak	Percent	Return	75.6	9	8.5
Style Such		Š	ns. + Lat.	Sens. + Lat	Total	Of Total			f Total			Space Sen	35	Tot Sens	Of Total	RetioA	78.4	'n	3.0
Company Comp			Btu/h	Btu/h	Btu/h	(%)		Btu/h	ч			Btm	F.	Btu/h	8	Fn MtrTD	0.0		0.0
Color Colo	Envelope Loads	50								Envelope	Loads		P			Fn BldTD			2
Color Colo	Skylite Solar		00	00	00	00		00	00	Skylite	Solar		00	00	0.00	Fn Frict	0.3		0.0
Color Colo	Door Cond	ij			9	0			0 0	Dong	DIO.			0 0	000				
1965 1967	Glass Solar		23.567		23 567	2 40		39.713	5	Glass S	olar		0	0	000		IRFLOWS		
2,775 5,897 8,473 2 2,984 1	Glass/Door Col	puo	7.815		7.815	7		7.790	60	Glass/D	loor Cond	-34.74	62	-34,743	1834				į
19 19 19 19 19 19 19 19	Wall Cond		2,776	5,697	8,473	2		2,964	-	Wall Co	pu	-9,31	9	-28,659	15.13		Cooling	_	ğ ;
1,000 1,00	Partition/Door		0		0	0		0	0	Partition	√Door		0	0	000	Diffuser	008,11		4
19,573 19,180 1,1910 1	Floor		0		0	0		0	0	Floor			0	0	0.00	Terminal	11,965		4
Second	Adjacent Floor		0	0	0	0		0	0	Adjacen	nt Floor		0	0	0	Main Fan	11,960		4
Substitute Sub	Infiltration		35,753		35,753	80		11,610	4	Infiltration	uc	-56,18		-56,191	29.66	=	0	_	•
Solution Solution	Sub Total ===>		69,912	5,697	75,608	16		62,076	24	Sub Tot	<== /e,	-100,24	6	-119,593	63.13	Ξ	4,074		1,667
190 600 190 600 26 120 10 190 600 26 120 10 190 600 26 120 10 190 600 26 120 10 190 600 26 120 10 190 600 26 120 10 190 600 26 120 10 190 600 26 120 10 190 600 26 120 10 190 600 26 120 10 190 600 26 120 10 26 26 26 26 26 26 26 2																AHU Vent	4,074		1.667
50,776 4,887 5,643 12 5,0776 12	Internal Loads								đ.	Internal L	oads					III	865		865
150 800 0 150 800 28 25 25 25 25 25 25 25	Lighte		50 778	4 887	55 643	12		50 77B	9	Linhte		50.77	8	55 643	2037	MinSton/Rh	3.148		3.148
72.291 72.291	People		130,800		130,800	28 2		75,335	28.0	People		75.33	2 10	75,335	39.77		12,768		4.001
198402 198402 198402 198402 199402 199402 199402 199402 199402 199402 199402 199402 199402 1999402	Misc		72.291		72,291	15		72.291	27	Misc		72.29	ٳ	72,291	-38.16		4.876		2,520
3,058 3,0	Sub Total		253.867	4 867	258 734	192	ĺ	08 402	75	Sub To	of many	10840	0	203 280	-107 30		63		÷
3,058 3,058 3,028 3,024 1 Celing Laad 9,026 2,6542 2,968 2,968 2,2966	1000		and and		1000	3		-	2	200				200	200	Auxiliary	0	_	0
135,119 28 0 0 0 0 0 0 0 0 0	Ceiling Load		3,058	-3.058	0	0		3,024	-	Selling Lo	pe	-8.02	9	0	00.0		0	_	0
0 0 0 0 0 0 0 0 0 0	Ventilation Load	P	0	0	135,119	29	\	0		Ventilation	Load		0	-56,542	29.85		0	_	
Columb C	Adj Air Trans He	eat	0		0	0		0		Adj Air Tra	ans Heat		0	0	0				
Pkup	Dehumid, Ov Si	Bulzi			0	9				Dv/Undr 8	guizing	157,05	0	-157,059	82.91				
Pkup	Ov/Undr Sizing		0		0	0		0		Exhaust H	leat			4,062	-2.14	ENGIN	VEERING C	KS	
Pkup	Exhaust Heat			-2,996	-2,996	7				OA Prehe	at DIff.			-40,878	21.58				
Pkup 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sup. Fan Heat				4,793	-			-	RA Prehes	at Diff.			-22,698	11.98		Cooling	Heat	8
Pkup	Ret. Fan Heat			0 (0 (0			•	Additiona	Reheat			0	0.00	× ×	0 000	n c	2 0
126,837 4,510 471,258 100,00 263,502 100,00 Grand Total ==	Duct Heat Pkup	_		0	0 (0								•			60.0	9	2
Total Capacity Coll Coll	Underlir Sup Ht	Pkup		,	0 (0 (Underfir	Sup Ht Pkup			0 (0.00		304.69		
Total Capacity Sensors 1,29,137 1,1256 100.00 1,1256 100.00 1,1256 100.00 1,1256 100.00 1,1256 100.00 1,1256 100.00 1,1256 1	Supply Air Leak	cage		0	0	0				Supply Ai	r Leakage			0	0.00	ft/ton	440.50	,	
COOLING COIL SELECTION Constitution Constitution Constitution Courand Total Constitution Constitu																Btuhr-ft,	27.24	-12	13
Total Capacity Sens Cap. Col Ling Coll SELECTION Sens Cap. Coll Airthow Enter DBAWBHR Leave DBAWBHR Cross Total Glass Total Capacity Cross Total Glass Total Capacity Cross Total Glass Total Capacity Cross Total Cross T	Grand Total ==>		326,837	4,510	471,258	100.00			100.001	Grand Tot	← FE	-86,93	2	-189,439	100.00	No. People	301		
Total Capacity Sens Cap. Coll Airflow Enter DBAWBHR Leave DBAWBHR Leave DBAWBHR Cross Total Glass Capacity (%) Capaci				COOLING	COIL SELE	CTION						AREA	ري ري	F	∥≖	EATING COIL	SELECTIO	z	
ton MBh MBh cfm "F "F grilb "F F G F F F F F G F F F F F F F F F F		Total	Capacity		Coll Airflow	Enter	DB/WB/H	œ	Leave	AH/BW/AC		Gross Total		s		Capacity	Coll Airflow		Lvg
1 39.3 471.3 288.6 11,391 78.4 66.2 78.3 54.6 52.6 56.7 Frior 17,299 Main Htg -140.9 3,148 54.6 54.6 52.6 56.7 Part 0 Aux Htg -140.9 3,148 54.6 54.6 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		ton	MBh	MBh	clm	L.		e e			_		#	8		MBh	clm	ů.	0
39.3 471.3 Auxiliary 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Main Clg	39.3	471.3	298.6	11,391	_			4,	4,		17,299			Aain Htg	-140.9	3,148	54.6	95.3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Aux Cig	0.0	0.0	0.0	-			0.0				-		4	Nux Htg	0.0	0	2	0.0
39.3 471.3 Roof 0 0 0 Humidf 0.0 0 0.0 Wall 6,260 1,660 27 Opt Vent 0.0 0 0.0 Ext Door 0 0 0 0 170tal -210.1	Opt Vent	0.0	0.0	0.0	0			0.0				00		_	reheat	-69.2	4,074	39.2	54.6
Wall 6,260 1,660 27 Opt Vent 0.0 0 0.0 Ext Door 0 0 0 Total -210.1	Total	39.3	471.3								Roof	00	0		fumidif	0.0	0	0.0	0
0 0 0 Total -2											Wall	6,260	1,660		Opt Vent	0.0	0	0.0	0.0
											Evt Door		0	=	Total	-2101			

TRACE® 700 v6.2.6.5 calculated at 01:49 PM on 02/24/2012 Alternative - 1 System Checksums Report Page 8 of 26

PSU ICE ARENA
___BIM__PSU_ICE_ARENA.trc

System Checksums
By ACADEMIC

Variable Volume Reheat (30% Min Flow Default)

	COOLING COIL PEAK	OIL PEAK			CLG SPACE PEAK	CE PEAK			HEATING COIL PEAK	OIL PEAK		TEMP	TEMPERATURES	s	_
Peake	Peaked at Time:	Mov	MoHr. 7/14		MoA	MoHr: 7 / 15			MoMr: P	Mo/Hr: Heating Design			Cooling	Heating	_
	Outside Air.	OADBAVBA	OADBAWB/HR: 91 / 74 / 102	05	OAD	OADB: 91			OADB	=		SADB Ra Plenum	75.2	95.0 69.5	0.10
	Space	Plenum	Net	Percent	Space				Space Peak	Coll Peak		Return	75.2	98	
	Sens. + Lat.	Sens. + Lat	Total	Of Total	Sensible	5			Space Sens	Tot Sens	5	Kenoa	7.70	200	
Fovelone Loade	Bturh	Btuh	Btufn	(%)	Bturh	ф (%)	Envelone Loade	Loade	8tn/h	Btu/h	8	Fn Mirrio	0.0	0.0	-
Slodite Solar	0	١	6	٥		0	Shalte Solar	Solar	9		000	En Brice	00	0	
Skylite Cond				0			Skyfte Cond	Cond		, 0	000		200	5	
RoofCond		0		ì			RoofCond	puo		4	0.00				Г
Glass Solar	•	0	0	0		0		Solar	0		0.00	AIR	AIRFLOWS		
Glass/Door Cond				ì	l		1.	Glass/Door Cond		0			Cooling	Heating	2
Wall Cond	1,033	1,022	2,055	-	1,010			puc	-3,359	-6,687		2000	5 707	4	660
Partition/Door	0		0	0				Partition/Door	0	0	0.00	Dillaser	0,10	5 (8 8
Floor	0	,	0	0		0			0	0	0.00	Terminal	5,707	n u	250
Adjacent Floor	0	0	0	0		0		Adjacent Floor	0 !	9		Main Fan	20,'0	n	3 9
Infiltration	26,592		26,592	10	11,519			uo.	-42,477	-42,477		Sec Fan	9		0
Sub Total ===>	27,625	1,022	28,647	=	12,529	9 10		Sub Total ==>	-45,836	-49,164	36.27	Nom Vent	2,611	4	430
												AHU Vent	2,611	4	430
Internal Loads							Internal Loads	oads				Infil	654	φ	654
Lights	31,740	280	32,330	12	31,740		Lights		31.740	32,330	-23.85	MinStop/Rh	550	S.	92
People	43,190	0	43,190	16	22,135				22,135	22,135		Return	4,532	đ	848
Mise	58,495	1	58,495	22	58,495	5 47	Misc		58,495	58,495		Exhaust	1,435	80	27
Sub Total ==>	133,425	280	134,015	25	112,370	68 0	9	Sub Total ==>	112,370	112,960	-83.33	Rm Exh	1,829	2	256
		Į					Ų					Auxiliary	0		0
Ceiling Load	803	-803	0	0	791		Celling Load	pad	-2,188	0		Leakage Dwn	0		0
Ventilation Load	0	0	106,128	40		0	Ventilation Load	n Load	0	-27,902	20.58	Leakage Ups	0		0
Adj Air Trans Heat			•	0		0	Adj Air Trans Hea	ans Heat	0	0	_				
Dehumid. Ov Sizing			0	0	ì	II II	Ov/Undr Sizing	Sizing	-16,507	-16,507					ĺΓ
Ov/Undr Sizing	0		0	0		0	0 Exhaust Heat	Heat		481		ENGINE	ENGINEERING CKS	S	
Exhaust Heat		-306	-306	0			OA Preheat Diff.	at Diff.		-105,668					
Sup. Fan Heat		9	0	0			RA Preheat Diff.	at Diff.		-49,763	co.		Cooling	Healing	
Ret. Fan Heat		0	0 (0 0			Additional Reheat	Reheat		0	0.00	40 %	40.0	0 0	- /-
Duct Heat Pkup		>	0 (0						•		CILLING	0.44	5	_
Underfir Sup Ht Pkup	dr.	•	0 (0 0			Underfir	Underfir Sup Ht Pkup			0.00	cfm/ton	255.10		
Supply Air Leakage		•	-	0			Supply A	Supply Air Leakage		•	00.00	TF/TON	284.48		
												Btuhr-ft,	20.53	-11.52	2
Grand Total ==>	161,854	205	268,484	100.00	125,680		100.00 Grand Total ==>	CRI ===>	47,840	-135,564	100.00	No. People	16		
		COOLING	OLING COIL SELECTION	CTION				L	AREAS		Ī	HEATING COIL SELECTION	SELECTION	 	
							-	_	-	-				1	
	ton MBh	sens Cap.	coll Airtiow	F F	F F gr/lb	F	F F gr/lb	¥ ^	Gross Total	Glass # (%)		Capacity	Capacity Coll Airlow MBh cfm	<u>.</u>	9. E
_	26	170.4	5,693	•	ш	55.0 53.7	_		13,077		Main Htg	-24.2		-	95.0
		0.0	0			0.0		Part	0		Aux Htg	0.0			0.0
Opt Vent	0.0 0.0	0.0	0	0.0	0.0 0.0	0.0	0.0 0.0	Int Door	00		Preheat	-126.5	2,611	11.0	92.0

TRACE® 700 v6.2.6.5 calculated at 01:49 PM on 02/24/2012 Alternative - 1 System Checksums Report Page 9 of 26

0.0

0.0

22.4 0.0 0.0

PSU ICE ARENA
___BIM__PSU_ICE_ARENA.tre Project Name: Dataset Name:

System Checksums
By ACADEMIC

Variable Volume Reheat (30% Min Flow Default)

	COOLING	COOLING COIL PEAK			CLG	CLG SPACE PEAK	PEAK			_	HEATING COIL PEAK	OIL PEAK			TEMPER	TEMPERATURES		
ď	Peaked at Time: Outside Air:	OADBAVE	MoMr. 7/14 OADBAVB/HR: 91/74/102	102		Mo/Hr: 7 / 15 OADB: 91	115				Mo/Hr. H OADB:	Mo/Hr. Heating Design DADB: 11		A S	SADB	55.0 75.3	Heating 95.0 70.5	5 10 to
	Space Sens. + Lat.	e Plenum t. Sens. + Lat	n Net	Percent Of Total		Space I	Percent Of Total				Space Peak Space Sens	Coil Peak Tot Sens	k Percent s Of Total		Return Ret/OA	75.3	51.7	42
Foundation	Btuff	h Btu/h			1		(%)	- 44	Envalone Leade		Btu/h	Btu/h			Fn MtrTD	0.0	0.0	0.0
Skylite Solar		II.	5	00		00	00	Sky	Skyfte Solar		0		0.00	_	'n Frict	0.3	0.0	
Skylite Cond Roof Cond Glass Solar				-		•	000		Skyffe Cond Roof Cond Glass Solar					888	AIRFI	AIRFLOWS		
Glass/Door Cond				0		0	0	mil.	Glass/Door Cond	Cond	9		0.00	8.8		Cooling	Heating	Da
Wall Cond		0				00	00		Wall Cond	,	00		000		Diffuser	2,954	9	644
Floor			, 0			0	0		of of	5	0	, 0	000	÷	erminal	2,854	9	644
Adjacent Floor		0	0			0	0		Adjacent Floor	100	0	3		=	Main Fan	2,954	9	4
Infiltration	17,608	89	17,608	13		7,871	12	_	Infiltration		-29,023	-29,023	3 61.84	_	Sec Fan	0		0
Sub Total ==>	17,608	0	17,608			7,871	12		Sub Total ==>	^	-28,023	-29,023			Nom Vent	1,629	en e	380
Internal Loads								Intern	Internal Loads	2					11 A A III	447	9.4	447
Lichts	21.48	1 942			-00	21 484	33	Lights	sit.		21 484	23.426	-49.91		MinStop/Rh	644	9	144
People	23,050		23,050			13,170	88		People		13.170	13.170			Return	3,397	1.0	1,088
Misc	21,693		ı	16		21,693	33			,	21,693	21,693		=	Exhaust	2,072	80	842
Sub Total ==>	66,227	7 1,942	2 68,169	9	K	56,347	87		Sub Total ==>	4	56,347	58,289	9 -124.19	=	Rm Exh	4		4
		Ŋ										,		_	Auxiliary	0 0		0
Ceiling Load		-838	0 49	0 10		837	-	Cellin	Ceiling Load	3	1,365	13 123	0.00		Leakage Dwn	0 0		0 0
Adi Air Trans Heat	18			-		0	00	AdiAi	Adi Air Trans Heat	leat	0	0			reavage ops	•		,
Dehimid Ou Sixing				9	١			Outling	Dull Inde Sizing		28 759	28 759	82 08					7
Outlind: Outlind				7 9	١.	•	9	145	Exhaust Heat	L	-36,736	-30,730		2 15			١,	Г
Exhaust Heat		-676	929-			0	•		OA Preheat Diff.	*		-19.589	4	2 4	ENGINEERINGCKS	KINGCK	n	
Sup. Fan Heat			_					RAPE	RA Preheat Diff.			4,284				Cooling	Heating	6
Ret. Fan Heat		0	9					Additi	Additional Reheat	reat		3	00:0		% 0A	55.1	61.9	o i
Duct Heat Pkup		0	0												cfm/ft*	0.33	0.07	_
Underfir Sup Ht Pkup	Pkup	,		0				Onder	Underfir Sup Ht Pkup	1t Pkup		,	0.00		cfmiton	257.99		
Supply Air Leakage	age	0		0				Suppl	Supply Air Leakage	akage		,	0000		ff/ton	780.33		_
2														Ξ	Btuhr-ft,	15.38	-6.14	4
Grand Total ==>	84,673	3 428	137,404	100.00		65,054	100.00	Grand	100.00 Grand Total	٥	-10,069	-46,935	100.00		No. People	23		
		COOLIN	COOLING COIL SELECTION	ECTION							AREAS			HEAT	HEATING COIL SELECTION	LECTION		Г
	Total Capacity		. Coll Airflow		Enter DB/WB/HR	ĸ	Leav	Leave DB/WB/HR	8/HR	9.5	Gross Total	Glass			Capacity Coll Airflow	Airflow	Elt	Lvg
	ton MBh	h MBh			<u>ب</u>	gr/lb	۳	ř.	gr/lb			(%) #			MBh	clm	ů.	ļ.
Main Clg	11.5 137.4	81.2	2,943	79.7	68.1	85.9	54.6 5	53.1	58.7	Floor	8,935		Main Htg	D _	-28.9	644 54	54.6	95.3
Dut Vent					0	000			000	Int Door			Draheat		280			2 8
Apr veilt					9	2			2	EXFI	0		T all the		0.02-			ż

TRACE® 700 v6.2.6.5 calculated at 01:49 PM on 02/24/2012 Alternative - 1 System Checksums Report Page 10 of 26

0.0 00

0.0

000

PSU ICE ARENA
___BIM__PSU_ICE_ARENA.tro Project Name: Dataset Name:

System Checksums
By ACADEMIC

Variable Volume Reheat (30% Min Flow Default)

	ö	COOLING COIL	OIL PEAK			CLG	CLG SPACE PEAK	PEAK			HEATING	HEATING COIL PEAK			TEMPE	TEMPERATURES	s	_
ď	Peaked at Time:	Time:	Mc	Mo/Hr: 7/14			Mo/Hr: 7 / 15	715			MoMr	MoMr: Heating Design				Cooling	Heatin	0
	Ontsi	Outside Air.	OADBAVB	OADBAVB/HR: 91 / 74 / 102	102		OADB: 91	_			OADB:	=		A S	SADB Ra Plenum	75.5	95.0	0.80
		Space	Plenum	Net	Percent		Space	Percent			Space Peak	Coll Peak	k Percent		Return	75.5	70	8
	ő	Sens. + Lat.	Sens. + Lat	Total	Of Total	ŏ	Sensible	Of Total			Space Sens	. Tot Sens	s Of Total		Ret/OA	80.9	20	_
_		Btuff	Btu/h	Btufh	(%)		Btu/h	(%)			Btu/h	1		(%) Fn	Fn MtrTD	0.0	0	0.0
Envelope Loads	Js							ĺ	Envelope Loads	Loads				E	Fn BldTD	0.1	0	0.0
Skylite Solar		0 0	00	00	00		00	00	Skylite Solar	Solar	00	1		=	Fn Frict	0.3	0	0.0
Skylite Cond	Į	00	00		ì		•	00	Skyllie Cond	Duo.			0.00	38				
Gass Solar		•		00	0			00	Glass Solar	Solar			000	38	AIR	AIRFLOWS		
Glass/Door Cond	puo	0	0	0	ì		0	0	Glass/	Glass/Door Cond	0			00			-	
Wall Cond		0	0	0			0	0	Wall Cond	puo	0					Cooling	Heating	Ē ;
Partition/Door	į.	0		0	0		0	0	Partitio	Partition/Door	J				Diffuser	2,620		354
Floor		0		0	0		0	0	Floor		J	_		Ė	ferminal	2,620	631	354
Adjacent Floor	,	0	0	0	0		0	0	Adjace	Adjacent Floor	0	_	0	O Ma	Main Fan	2,620	.,	4
Infiltration		12,303		12,303			5,747	9	Infiltration	ion	-21,191				Sec Fan	0		0
Sub Total ===>		12,303	0	12,303			5,747	10	Sub To	Sub Total ==>	-21,191	-21,191	1 61.20	Ξ	Nom Vent	1,816		333
														A	AHU Vent	1,816		233
Internal Loads									Internal Loads	speo				Ē		326		126
Lights		16 944	2 207	19.150	14		16 944	29	Lights		16 944	19 150	0 -5531		MinStoo/Rh	354		354
People		39 050	0	39.050			21 645	8	People		21 645	•			Return	2,666		32
Misc		12,420		12,420	6		12,420	52	Misc		12,420	1			Exhaust	1,862		511
Sub Total ==>		68.414	2 207	70.620			51 009	88	Sub To	Sub Total ==>	51,009		5 -153.69		Rm Exh	280		48
			1												Auxiliary	0		0
Celling Load		947	-947	0	0		945	2	Celling Load	peo	1,651				Leakage Dwn	0		0
Ventilation Load	PE	0	0	53,396	39	\	0	0	Ventilation Load	n Load	0	7,622	2 22.01	Ξ	Leakage Ups	0		0
Adj Air Trans Heat	leat	0		0	0		0	0	Adj Air Ti	Adj Air Trans Heat	0			0				
Dehumid, Ov Sizing	Sizing			0	0				OviUndr Sizing	Sizing	-24,477	-24,477	_	\$				IL
Ov/Undr Sizing	-	0		0			0	0	_	Heat		-450		90	ENGINE	ENGINEERING CKS	S	
Exhaust Heat			-939	-939					OA Preheat Diff.	at DIff.		-24,959		90				_
Sup. Fan Heat				1,099					RA Preheat DIff.	at DIff.		-9,141	64			Cooling	Heating	000
Ret. Fan Heat			0 0	0 (0			4000	Additional Reheat	al Reheat		_	0.00		% 0A	68.3	800	D) 10
Duct Heat Pkup	0		0		9 (•			TIME .	000	30	2
Underfir Sup Ht Pkup	It Pkup			0 0	0 0			4.30	Underfil	Underfilr Sup Ht Pkup			0.00		cfm/ton	230.38		
Supply Air Leakage	akage		•	9	9				SupplyA	Supply Air Leakage			0.00		TF/ION	5/3.03		_
														=	Btuhr-ft,	20.92	-6.81	
Grand Total ==>	î	81,664	321	136,479	100.00		57,701	100.00	100.00 Grand Total ==>	tal ==>	6,991	-34,624	4 100.00		No. People	82		
			COOLING	S COIL SEL	ECTION						AREAS	·	L	HEAT	HEATING COIL SELECTION	ELECTIO	z	
	Total	Total Canadity	Bono Con	Coll Airflow	Entor	Cotor Downline	,	1	OLI OWN OF A PROPERTY		Orong Total	Place			Company Co	oil Airflow	ì	
	ton	MBh	MBh	MBh cfm °F	.F	F g	gr/lb	.F	°F grilb	¥ 0	Gross rotal	(%) #			MBh cfm	cfm		ų. F
Main Clg	11.4	136.5	75.5	2,612	80.9		-	54.6 52.9		9 Floor	6,524		Main Htg		-15.8	354		35.2
Aux Clg	0.0	0.0	0.0		0.0		0.0	0.0		_	0		Aux Htg		0.0			0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0 0.0		0 0		Preheat		-28.6	1,816	40.3	54.6
										EXT								-

® 700 v6.2.6.5 calculated at 01:

0.0

0.0

0.0 4

Total Capacity ton MBh 11.4 136.5 0.0 0.0 11.4 136.5

PSU ICE ARENA
___BIM__PSU_ICE_ARENA.trc Project Name: Dataset Name:

System Checksums
By ACADEMIC

AHN-9

Variable Volume Reheat (30% Min Flow Default)

	ŏ	COLINGC	COOLING COIL PEAK			CLG	CLG SPACE PEAK	PEAK			HEATING (HEATING COIL PEAK			TEMPERATURES	ATURE	'n	
	Peaked at Time:	t Time:	Mc	Mo/Hr: 7/14			Mo/Hr. 7 / 15	1115			MoHr	Mo/Hr: Heating Design				Cooling	Heating	6
	Outs	Outside Air:	OADBAVB	OADB/WB/HR: 91 / 74 / 102	102		OADB: 91	=			OADB: 11	=		SADB Ra Ple	SADB Ra Plenum	75.4	2 8	0 80
		Space	Plenum	ž	Percent		Space	Percent			Space Peak	Coil Peak	k Percent		-	66.3	57.9	0
	G	Sens. + Lat.	Sens. + Lat	-			Sensible	Of Total			Space Sens	Tot Sens			OA	66.3	57.9	
	Į	Btuh	Btu/h	Btu/h		1	Bhu/h	(%)			Btu/h	Btu/h		=	Fn MtrTD	0.0	0.0	0
Envelope Loads	Loads		1						Envelope Loads	speo.				FnB	Fn BldTD	0.0	0	0
Skylite Solar	olar	0	0	0			0	0	Skylite Solar	olar	0	1	0.00	_	'n Frict	0.0	0	0
Skylite Cond	puo	0	0		Ì			0	Skylite	puo	0		0000					1
Root Cond	D L	•		00	00		0	00	Glass Solar	nd			000	2 9	AIRFI	AIRFI OWS		
Glass Door Cond	Dane Count							0	Closello	Glass/Door Cond	-		000					_
Wall Cond	200	0						-	Wall Cond	page po				20		Cooling	Heating	ng
Partition/Door	Door		•				0	0	Partition/Door	Door				Ξ	Diffuser	4,281	e	368
Floor	5	0		0	. 0		0	0	Floor		0		0000	_	ferminal	4,281	e	368
Adjacent Floor	Floor	0	0	0	0	-	0	0	Adjacent Floor	Floor	0	_	-	=	Main Fan	4,281	c	89
Infiltration	_	17,805		17,805			8,374	0	Infiltration		-30,878	-30,878	8 12.49		Sec Fan	0		0
Sub Total ===>	/mm/	17,805	0	17,805		-	8.374	00	Sub Total ==>	·==/u	-30,878	-30,878		Ξ	Nom Vent	3,774	3.7	3,774
														AHO	AHU Vent	3,774	3.7	3,774
Internal Loads	spec								Internal Loads	ads				Ju		475	4	475
linhte		20 622	3 103	23.815			20,622	33	Lighte		20,622	23.816			MinSton/Rh	368	6	368
People		109 450	0	109 450		-	61 990	98	People		61 990	61.990	-2507	_	-	8.520	4.8	20
Misc		2,130		2,130	2		2,130	5	Misc	1	2,130	2,130		Ξ	Exhaust	4,238	4,238	38
Sub Total	/mm/	132,202	3,193	135,395	153		84,742	06	Sub Total ==>	/ mm/	84.742	87,935	5 -35.56	Ξ	Rm Exh	F		=
			1,											_	Auxiliary	0		0
Ceiling Load	pe	1,170	-1,170	0	0		1,168	1	Celling Load	pe	2,448	_		=	Leakage Dwn	0		0
Ventilation Load	Load	0	-108,026	-108,026			0	0	Ventilation Load	Load	0	-62,334	2521	=	eakage Ups	0		0
Adj Air Trans Hea	ins Heat	0		0	•		0	0	Adj Air Trans Heal	ns Heat	0			0				
Dehumid, Ov Sizing	Ov Sizing			•	,		1		Ov/Undr Sizing	Sing	-19,974	-19,974						ĬГ
Ov/Undr Sizing	izing	0		0		-	0	0		eat		56,664	•	2	ENGINEERING CKS	RINGC	(S	
Exhaust Heat	eat		43,538	43,538					OA Preheat DIff.	COIF.		-241,190		4 9	•	Cooling	Heating	
Sup. Fan Heal	leat		•	0 (RA Preheat DIII.	L DIFF.		-36,338	_	2		000	4 024 4	7 × 6
Ret. Fan Heat	Pkin		00	96	9 0				Additional Reheat	Reheat		edr, r-	0.47		į į	0.45	0.04	1 4
Hodorffe Sun Mt Diem	day of		•						Indeeds 6	Indeeds Our Li Dian		,	000		aon a	176.40		
Sunniv Air Leakage	Leakade		0	0					Supply Air Leakage	Leakane						391.66		
and fielding	- Samuel		,						in fidding	Samo					Bright. 62	30.64	97.08	α
Crand Total	(II)	151 176	APA GAL	SR 712	100 00	٠.	284 283	100 00	100 00 Grand Total	-	26 328	ATC 7AC.	10000		No Boorle	240	2	0
		21,101	-04/40+	21 1,00			203,45	20.00	Diam'r		nee'ne	17,142-		=	aidoau	649		
			COOLING	COOLING COIL SELECTION	ECTION						AREAS		L	HEATIN	HEATING COIL SELECTION	LECTION	_	
	Total	Total Canadity	Cono Can	Coil Airflow	Enfor	Enfor DRAWBIND	9	- Control	ON BUNBAND		Cross Total				Canacity Coll	Airflow	à	200
	ton	MBh	MBh MBh	cfm	Į.	F	gr/lb	F	F gr/b		ioss iotal	(%) #			MBh cell cfm	cfm		ğ.
Main Clg	7.4	88.7	53.3	4,270			64.7		4,	Floor	9,506		Main Htg		-16.2	368 5	-	95.0
Aux Clg	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0 0.0	Part	0		Aux Htg		0.0	0	0.0	0.0
Opt Vent	16.9	202.5	89.3	3,774	78.9	10.8	102.2	55.0 54.5	1.5 63.3	Int Door	0 (Preheat		0.0	0	0.0	0.0
										EXFIR								-

TRACE® 700 v6.2.6.5 calculated at 01:49 PM on 02/24/2012 Alternative - 1 System Checksums Report Page 12 of 26

PSU ICE ARENA
___BIM__PSU_ICE_ARENA.tro

Project Name: Dataset Name:

System Checksums By ACADEMIC

_
=
_
3
=
ero.
-
•
~
_
-
~
~
0
_
ш.
_
_
=
~
2
_
~
~
ന
$\overline{}$
=
40
•
-
_
•
~
<u>. </u>
-
•
_
€
-
_
ズ
y
>
-
0
_
0
=
rQ.
_
=
mi.
`
_

	COOLING COIL PEAK	OIL PEAK			CLG SPACE PEAK	PEAK			HEATING (HEATING COIL PEAK		TEMPE	TEMPERATURES	
Peake	Peaked at Time: Outside Air.	Mc OADBAVB	MoHr: 7/15 OADBAVB/HR: 91/74/101		Mo/Hr: 7 / 20 OADB: 83	7 / 20			MoMr: OADB:	Mo/Hr: Heating Design DADB: 11		SADB Ra Plenum	Cooling 50.0 66.3	Heating 80.0
	Space	Plenum	Net	Percent	Space	Percent			Space Peak	Coll Peak	Percent	Return	66.3	64.9
	Sens. + Lat.	Sens. + Lat	Total	Of Total	Sensible	Of Total			Space Sens	Tot Sens	Of Total	Ret/OA	70.1	47.1
	Btwh	Btu/h	Bturh	(%)	Btu/h	(%)			Btu/h	Btu/h	8	Fn MtrTD	0.1	0.0
Envelope Loads		1				ĺ	Envelope Loads	spu				Fn BldTD	0.1	0.0
Skylite Solar	00	00	00	00	00	0.0	Skylte Solar	27	00		0.00	Fn Frict	0,4	0.0
Daylie Colla	64 006	00	900	•	474 456	10	Door Cond	9	202 702	707.70	23.70			
Glass Solar	066'+		088'5	10	0	0	Glass Solar		0	0,10	0.00	AIR	AIRFLOWS	
Glass/Door Cond	0	0	9	0	0	0	Glass/Door Cond	Cond	0		0.00		Cooling	Heating
Wall Cond	0	0	0	0	0	0	Wall Cond		0	9	00.00		Dillion of	Guina
Partition/Door	0		0	0	0	0	Partition/Door	200	0	9	0.00	Diffuser	43,282	12,986
Floor	-272,910		-272,910	-17	-272,910	88	Floor		-272,910	-272,910	_	Terminal	43,282	12,986
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	loor	0	0	0	Main Fan	43,282	12,986
Infiltration	128,375		128,375	8	44,180	9	Infiltration		-136,328	-136,328		Sec Fan	0	0
Sub Total ==>	-79,539	0	-79,539	ç	-104,574	-15	Sub Total ==>	^!!	-506,945	-506,945	123.40	Nom Vent	24,068	12,986
												AHU Vent	24,068	12,986
Internal Loads							Internal Loads	8				Infil	2,293	2,293
Lights	63,141	0	63,141	4	63,141	Ø	Lights		63,141	63,141	-15.37	MinStop/Rh	12,986	12,986
People	1,360,800	0	1,360,800	82	756,000	106	People		756,000	756,000	-184.02	Return	45,575	15,279
Misc	•		ا	0	0		Misc	1	٩	0	0.00	Exhaust	26,360	15,279
Sub Total ==>	1,423,941	0	1,423,941	68	819,141	115	Sub Total ==>	^	819,141	819.141	-199.39	Rm Exh	0	0
		1,										Auxiliary	0	0
Celling Load	164	-164	0	0	297	0	Celling Load		-850	J	0.00	Leakage Dwn	0	0
Ventilation Load	0	0	277,233	17	0	0	Ventilation Load	ped	0	-255,871	62.28	Leakage Ups	0	0
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Hea	Heat	0	9	0			
Dehumid, Ov Sizing			•	0			Ov/Undr Sizing	6	-526,028	-526,028				
Ov/Undr Sizing	0		0	0	0	0	Exhaust Heat	,		87,632	*7		ENGINEERING CKS	"
Exhaust Heat		-38,039	-38,039	5			OA Preheat Diff.	Ë		-28,752				
Sup. Fan Heat			24,291	5			RA Preheat Diff.	#		3	0.00		Cooling	Healing
Ret. Fan Heat		0	0	0			Additional Reheal	heat		J	00:00	% OA	99.66	100.0
Duct Heat Pkup		0	0	0									1.87	0.56
Underfir Sup Ht Pkup	Q.		0	0			Underfir Sup Ht Pkup	Ht Pkup		٥	0.00		323.02	
Supply Air Leakage		0	0	0			Supply Air Leakage	akage		0	000	ft/ton	172.59	
												Btuhr-ft,	69.53	-18.88
Grand Total ==>	1,344,565	-38,203	1,607,886	100.00	714,864	100.00	Grand Total ==>	î	-214,482	-410,824	100.00	No. People	3,024	

			COOLING	COIL SEL	ECTIO	N.				Ī		AREA	6	Г	Ĭ	EATING COI	LSELECTI	NO		
	Total	Capacity MBh	Sens Cap.	Coll Airflow	F.	er DB/WI	S/HR gr/lb	Lean F	ve DBW	B/HR gr/lb	ŏ	Gross Total	Glass	38		Capacity	y Coll Airflov	m.	Ž.	ÐΨ
Main Clg Aux Clg	134.0	34.0 1,607.9	868.0	40,991 70.1 59.4 59.7 0 0.0 0.0 0.0	70.1	59.4	59.7	49.5	49.5 44.4 35.9	35.9	Floor	23,125			Main Htg Aux Htg	Htg -436.7 12,986 49.5 80.0	12,98	49.5	0.0	0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Int Door	0			Preheat	0.0	_	0.0	0	0
Total	134.0	1,607.9									Roof	22,731	0	0	Humidif	0.0	_	0.0	0	0
											Wall	0	0	0	Opt Vent	0.0	_	0.0	0	0
										ī	Ext Door	0	0	0	Total	436.7				

TRACE® 700 v6.2.6.5 calculated at 01:49 PM on 02/24/2012 Alternative - 1 System Checksums Report Page 2 of 26

PSU ICE ARENA
BIM_PSU_ICE_ARENA tro Project Name: Dataset Name:

AHU-10

System Checksums

By ACADEMIC

AHU-11

Variable Volume Reheat (30% Min Flow Default)

ũ	COOLING COIL PEAK	OIL PEAK			CLG SPACE PEAK	PEAK		HEATIN	HEATING COIL PEAK	PEAK		TEMPE	TEMPERATURES	
Peaked at Time:	t Time:	MoAH	Hr. 7/14		Mo/Hr: 7 / 20	7 / 20		Mo/h		g Design			Cooling	Heating
Outs	Outside Air.	OADB/WB/HR:	IR: 91/74/102	05	OADB: 83	8		OADB	11			SADB Ra Plenum	50.0 66.1	80.0 59.7
	Space	Plenum	Net	Percent:	Space	Percent		Space Peak	*	Coil Peak	Percent	Return	66.1	65.0
40	Sens. + Lat.	Sens. + Lat	Total	Of Total	Sensible	Of Total		Space Sens	us	Tot Sens	Of Total	RetioA	69.9	47.1
	Btuth	Btu/h	Btufh	(%)	Btu/h	(%)		Btuff	n/h	Btu/h	8	Fn MtrTD	0.0	0.0
Envelope Loads				(Ì	Envelope Loads	1s	P			Fn BldTD	0.1	0.0
Skylite Solar	0	0	0	0	01	0	Skylite Solar		0	0	0.00	Fn Frict	0.3	0.0
Skylite Cond	0	0	0	0	0	0	Skylite Cond		0	0	0.00			
Roof Cond	51,833	0	51,833	2	124,156	18	RoofCond	107,707	07	-97,707	23,88			
Glass Solar	0		0	0	0	0	Glass Solar		0	0	0.00	AIR	AIRFLOWS	
Glass/Door Cond	0			0	0	0	Glass/Door Cond	Cond	0	0	000		Pilloo	Meating
Wall Cond	0	0	0	0	0	0	Wall Cond		0	0	0.00		000	0.00
Partition/Door	0		0	0	0	0	Partition/Door	20	0	0	0.00	Diffuser	42,088	12,870
Floor	-272,910		-272,910	-13	-272,910	-38	Floor	-272,910	5	-272,910	66.71	Terminal	42,899	12,870
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor		0	0	0	Main Fan	42,899	12,870
Infiltration	126,363		126,363	9	43,945	9	Infiltration	-135,602	02	-135,602	33.15	Sec Fan	0	0
Sub Total ===>	-94,714	0	-94,714	4	-104,809	-15	Sub Total ==>	-> -506,219	19	-506,219	123.74	Nom Vent	23,895	12,870
												AHU Vent	23,895	12,870
Internal Loads							Internal Loads					Infil	2,281	2,281
Lights	62,474	0	62,474	3	62,474	0	Lights	62,474	74	62,474	-15.27	MinStop/Rh	12,870	12,870
People	1,351,350	0	1,351,350	63	750,750	108	People	750,750	20	750,750	-183,52	Return	45,179	15,151
Misc	ا	1	ا	0	0		Misc		ا	0	00'0	Exhaust	26,176	15,151
Sub Total ==>	1,413,824	0	1,413,824	99	813,224	115	Sub Total ===	813.224	24	813,224	-198.79	Rm Exh	0	0
		l										Auxiliary	0	0
Celling Load	51	197	0	0	114	0	Celling Load	22	250	0	0.00	Leakage Dwn	0	0
Ventilation Load	0	0	848,847	39	0	0	Ventilation Load	pe	0	-254,231	62.15	Leakage Ups	0	0
Adj Air Trans Heat	٥		•	0	0	0	Adj Air Trans Hea	teat	0	0	0			
Dehimid Ov Sizing				9			Ov/Undr Sizing	519322	22	-519.322	128.95			
OviUndr Sizing	0		0	0	0	0	Exhaust Heat			87,920	-21.49	HNGNH	FNGINFFRINGCKS	
Exhaust Heat		-31,048	-31,048	٦			OA Preheat Diff.	¥		-30,464	7.45			
Sup. Fan Heat			18,836	÷			RA Preheat Diff.			0	000		Cooling	Heating
Ret. Fan Heat		0	0	0			Additional Reheat	reat		0	0.00	% OA	22.5	100.0
Duct Heat Pkup		0	0	0								cfmff	1.87	0.56
Underfir Sup Ht Pkup			0	0			Underfir Sup Ht Pkup	It Pkup		0	00'0	cfmton	238.80	
Supply Air Leakage		0	0	0			Supply Air Leakage	kage		0	000	ft²/ton	127.37	
												Btuhr-ft	94.22	-18.85
Grand Total ==>	1,319,161	-31,099	2,155,745	100.001	708,530	100.00	Grand Total ==>	-212,567	29	-409,092	100.00	No. People	3,003	

SELECTION	Capacity Coll Airflow End MBh ofm °F	12,870 49.6	0.0 0	0.0	0.0	0.0	
EATING COIL	Capacity	431.2	0.0	0.0	0.0	0.0	431.2
Ī		Main Htg	Aux Htg	Preheat	Humidif	Opt Vent	Total
	33				0	0	0
	gass #				0	0	0
AREAS	Pross Total	22,881					0
					Roof	Wall	Ext Door
	Leave DB/WB/HR	36.3	0.0	0.0			
	Ne Dev	44.6	0.0	0.0			
	a.	49.6	0.0	0.0			
	gr/lb	81.9	0.0	0.0			
z	Š.	84.2	0.0	0.0			
ECTIO	Enter DB/WB	6.69.5	0.0	0.0			
COIL SEL	Coll Airflow cfm	39,732	0	0			
COOLING	Sens Cap. MBh	839.4	0.0	0.0			
	Total Capacity ton MBh	2,155.7	0.0	0.0	2,155.7		
	Total	179.7	0.0	0.0	179.7		
		Main CIg	Aux Clg	Opt Vent	Total		

TRACE® 700 v6.2.6.5 calculated at 01:49 PM on 02/24/2012 Alternative - 1 System Checksums Report Page 3 of 26

Project Name: PSU ICE ARENA
Dataset Name: ___BIM__PSU_ICE_ARENA.ro

System Checksums

O	
₹	
씨	
Ā	
ð	
7	
Ш	

Variable Volume Reheat (30% Min Flow Default)

	COOLING	COOLING COIL PEAK			CLG SI	CLG SPACE PEAK	EAK			HEATING COIL PEAK	OIL PEAK			TEMPE	TEMPERATURES	s	_
Pes	Peaked at Time:	Me	MoHr. 7/14		- (MoHr: 7 / 19	19			MoMr.	Mo/Hr: Heating Design	E			Cooling	Heating	90
	Outside Air.	CADBAVE	UBWB/HK: 917747102	70	,	CAUE: 85	-00-0			CAUB	=		_	SADE Ra Plenum	70.1	59.9	2 00
	Space	Plenum	Net	Percent	60	Space	Percent			Space Peak	Coil Peak		Percent	Return	70.1	29	a
	Sens. + Lat.	Ser	Total	Of Total	Les C		Of Total			Space Sens	Tot Sens			Ret/OA	75.4	47.4	. 4
	Rhuth	Rhith	Ruch	1767	1	н	70	ì	ì	Rhith	4			Fn MtrTD	0.0	0	0.0
Envelope Loads		ĺ		and a	1		311	Envelope Loads	ads					Fn BldTD	0.1	0	0.0
Skylite Solar	0	N.	0	0		0	0	Skylite Solar	lar	0	ı.	0	0.00	Fn Frict	0.3	0	0.0
Skylite Cond		0		0		0	0	Skylite Co	pu	0			0.00				1
Roof Cond	0	4	43,776	23		0	0	Roof Cond		0	-85,852		98.55				
Glass Solar	0		0	0		0	0	Glass Solar		0		0	0.00	AIR	AIRFLOWS		_
GlassiDoor Cond	ı	ì		٦			1	Glass/Door Cond	r Cond				0.00		Cooling	Heating	Du
Wall Cond	12,443	11,380	23,823	8	-	13,212	000	Wall Cond		-30,403	-56,853		36.99	Diffuser	1,747	4	4.463
Floor	000 385		645 920	856	5.4	245 920	744	Floor	5	545 920	000 343	35	00.0	Terminal	1.747		63
Adjacent Floor	0.20,040	-	070'51	9	Ś	070'0	-	Adjacent Floor	Floor	070'050	2			Main Fan	1.747		4.463
Infiltration	80 770		80.770	6	20	30 822	42	Infiltration	5	-98 498	-98 498		64 09	Sec Fan	0		0
Sub Total ===>	452,608	55.157	-397.451	477	-50	501,786	684	Sub Total ==>	î	-674,722	-787,023			Nom Vent	1,747	4	4.376
							-							AHII Vent	1.747	. 4	4 378
Internal Loads							=	internal Loads	qs				_	-	1,619		619
Lichte	244 736	2817	215 574	7	24	1736	280	Lichte		211 728	215 574		Ξ	MinSton/Rh	4.463	4	4.463
People	125,650		125,650	151	7 99	69.240	8 8	People		69,240	69,240		45.05	Return	3,366	6.0	6,082
Misc	61,762	0	61,762		9	61.762	25	Misc		61,762	61,762		Ξ	Exhaust	3,366		5,994
Sub Total ==>	399.148	3.83	402.985		34	342.738	467	Sub Total ==>	^	342.738	346.575	1	=	Rm Exh	0		0
		Ŋ											_	Auxiliary	0		0
Celling Load	26,506	-26.50	0	0	55	52,864	-72 C	Celling Load	_	-65,628			Ξ	Leakage Dwn	0		0
Ventilation Load	i	0	58,440	20		0	-	Ventilation Load	peo	0	-89,339		58.13	Leakage Ups	0		0
Adj Air Trans Heal	_		0	0	١	0	0	Adj Air Trans Heal	s Heat	0			0				
Dehumid, Ov Sizing	fing		•	9	١		٥	Ov/Undr Sizing	ng.	328,955	328,955	•	214.04				ĺ
Ov/Undr Sizing	32,814		32,814	38		32,814	45 E	Exhaust Heat			40,154		-26.13	ENGINE	ENGINEERING CKS	S)	
Expanst Heat		216,91-	216,91-				0	OA Preneat DITT.	H.		ó		000		Cooling	Hoofing	-
Sup. Fan Heat		•	96,				2	RA Preheat DIII.	DIE.			0 (000	080	D
Ret. Fan Heat		0	0	0 0			•	Additional Reheat	eheat			0	0.00	The state of the s	9000	0.00	
Duct Heat Pkup	4	D	00	00				Industry Sun Ut Divin	1000				8	cimir	151.80	9	4
onder il appur	dnu	•	0 0	0				ne III ani	dhu a lu					CHINA	00.00		_
supply Air Leakage	age	•	0	5			20	supply Air Leakage	eakage			0		Rhithr-ft*	4 27	1 96	4
	. 000		000		ì										1	-	
Grand Total ==>	098'6	18,176	83,266	100.00	-7-	-73,371	00:001	100.00 Grand Total ==>	î	-68,657	-153,690		100.00	No. People	275		
		N IOOO	COOLING COIL SELECTION	NOITO						ADEAS		Ļ	Ä	HEATING COIL SELECTION	CITORIA	₂	
	Total Canadian	Supplement of the supplement o	Coll Airford	Total District	Entor De Avenue		O como	ON OW OUT	•	Cross Total	90010	_		Canadity	Selection		
	ton MBh	MBh	cfm	-F	*F gr/lb	۵	F F	grilb	•	ioss rotal	(%)			MBh	cfm	Į.) Uir
Main Clg	11.5 138.1	0.0	1,66		9		4		Floor	32,379		Main Htg	Htg	-58.5	1,747		80.0
Aux cig			-						Fart	0		AUX HTG	E L	0.0			0.0
Opt Vent	0.0	0.0	0	0.0	0.0 0.0	0	0.0	0.0	Int Door	0		Preheat	eat	4.6	1,747	47.2	49.6
									EXFI	16,540				0	•	6	0
Total	11.5 138.1								Wall	10,080		Humidir	dir fami	000	00	0.0	0.0

z	튭	49.6	0.0	47.2		0.0	0.0	
SELECTIC	Coil Airflow cfm	1,747	0	1,747		0	0	
HEATING COIL SELECTION	Capacity	-58.5	0.0	4.6		0.0	0.0	-63.2
HEA		Main Htg	Aux Htg	Preheat		Humidif	Opt Vent	Total
	3					0	0	0
	Flass F					0	0	0
AREAS	oss Total	32,379	0	0	16,540	22,075	10,080	0
	ö	Floor	Part	Int Door	EXFI	Roof	Wall	Ext Door
	WB/HR gr/lb	24.5	0.0	0.0				
	\$	49.6 40.9		0.0				
	5							
	5	-4						

TRACE® 700 v6.2.6.5 calculated at 01:49 PM on 02/24/2012 Alternative - 1 System Checksums Report Page 4 of 26

PSU ICE ARENA
BIM_PSU_ICE_ARENA.tro Project Name: Dataset Name:

System Checksums By ACADEMIC

FCU

Variable Volume Reheat (30% Min Flow Default)

_						_	1 -																				i									
	Heating 95.0	69.3	41.3	0.0	0.0	0.0				Heating	2 192	000	2,192	2,182	0	1,054	1,054	528	2.192	2,720	1,582	0	0	0	0			S	Unathan	40 1	200	7.0		-14.50		_
TEMPERATURES	Cooling 55.0	75.2	77.6	0.0	0.0	0.0		AIDEL OWIG	RTLOWS	Cooling	7.270	7 270	070,7	0/2,	0	1,169	1,169	528	2.192	7,798	1,697	0	0	0	0			ENGINEERING CKS	Cooling	guillo 1 at	080	367.04	533.37	22.50	8	SELECTION
TEM	SADB	Ra Pienum Return	Ret/OA	Fn MtrTD	Fn BidTD	Fn Frict		~	•		Diffuser	Towns land	Herminal Mein Fon	Main Fan	Sec Fan	Nom Vent	AHU Vent	Infil	MinSton/Rh	Return	Exhaust	Rm Exh	Auxiliary	Leakage Dwn	Leakage Ups			ENGIN			of miles	climite	fP/Ion	Btufhrft	No. People	HEATING COIL SELECTION
		Percent	Of Total	8		0.0	000	86	000	1.69	00.0	0.00	0.00	0	22.40	29.75			24 44	13.44	-58.03	95.91		0.00	44.71	0	106.90	-0.79	505	11.70	0.00	000	000		100.00	Ŧ
PEAK	ng Design	Coil Peak	Tot Sens	Btu/h	,	00	0	00	0	-2,595	400,00	0 0	0	0	-34,314	-45,574			37 441	20,580	88,881	146.902		0	-68,482	0	-163,740	1,207	190'0-	-17,924	2	•	0	•	-153,171	
HEATING COIL PEAK	Mo/Hr: Heating Design OADB: 11	Space Peak	Space Sens	Btu/h					0	2,595	/QR'5-	0 (0	0	-34,314	-40,877			37 137	20,580	88,881	146 598		-2,319		0	-163,740								-60,337	AREAS
					Envelope Loads	Skylite Solar	DISCOURS OF THE COLOR	Glass Solar	Glass Solial	Glass/Door Cond	wall cond	Partition/Door	Floor	Adjacent Floor	Infiltration	Sub Total ==>		Internal Loads	Linhte	People	Misc	Sub Total ==>		Celling Load	Ventilation Load	Adj Air Trans Heat	Ov/Undr Sizing	Exhaust Heat	OA Preheat DIff.	RA Preheat DIff.	Additional Reneat	Industr Cun Li Diun	Supply Air Leakage	Samon in fielding	100.00 Grand Total ==>	
EAK	116	Percent	Of Total	(%)		00	00	2		ľ	- 0	0 0	0	0	9	80		=.	23	135	28	82		0		0	Ĭ	0			•				100.00	
CLG SPACE PEAK	Mo/Hr: 7 / 16 OADB: 91	Space		Btn/h		0.0		2 243	6,243	419	761.1	0 0	0	0	9,015	13,024			37 137	20,580	88,881	146 598		469	0	0		0							160,091	
		Percent	Of Total	(%)	ľ	00				0	- 0	0 0	0	o	9	12:			18	4	37	67		0	21	0	0	0	0	0	5 0	00	0		100.00	CTION
	MoHr: 7/14 OADBAVB/HR: 91/74/102	Net	Total	Btu/h		00		1 264	5 5	518	6/0'7	0	0	0	22,883	27,344			37 441	33,600	88,881	159.922		0	50,682	0	0	0	9/7-	0 (0	00	0		237,671	COOLING COIL SELECTION
IL PEAK	Mof- OADBAVB/H	Plenum	Sens. + Lat	Bturh		00					404		,	0		1,454			304	0	١	304		495	0				9/7-	•	-	•	0	,	286	COOLING
COOLING COIL	ked at Time: Outside Air:	Space	, 1	Btu/h		00		1 26.4	507'	916	677'1	0 0	0	0	22,883	25,890			37 137	33,600	88.881	159.618		495	6	٥		0							186,003	
ŭ	Peaked at Time: Outside Air:		co)		Envelope Loads	Skylite Solar	Chyllic Coll	Good Cond	Glass Solar	Glass/Door Cond	wall cond	Paruson/Door	Floor	Adjacent Floor	Infiltration	Sub Total ==>		Internal Loads	lights	People	Misc	Sub Total ***		Celling Load	Ventilation Load	Adj Air Trans Heat	Dehumid, Ov Sizing	Ov/Undr Sizing	Exhaust Heat	Sup. Fan Heat	Ref. Fan Heat	Duct Heat Pkup	Supply Air Leakage	Same of fidding	Grand Total ==>	

																	1
	COOLING	S COIL SELE	CTIO	z						AREAS	SI		Ĩ	EATING COIL	SELECTIO	z	
¥.₹	Sens Cap. MBh	Coil Airflow cfm	Ę.	P P	gr/lb	F	e DBA	VB/HR gr/lb		Gross Total	Glass	3		Capacity	Coil Airflow cfm	5	Ŋ.
r. 0	180.1	180.1 7,225 77.6 64.2 69.5 55.0 53.1 58.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	69.5	55.0	53.1	0.0	Floor	10,564			Main Htg Aux Htg	tg -96.5 2,192 55.0 95.0 tg 0.0 0.0 0.0	2,192	0.0	95.0
0.	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Int Door	00			Preheat	-56.6	1,169	11.0	55.0
7.									Roof	00	0	0	Humidif	0.0	0	0.0	0.0
									Wall	-	124	80	Opt Vent	0.0	0	0.0	0.0
									Ext Doo	0	0	0	Total	-153.2			

Main Clg Aux Clg Opt Vent

TRACE® 700 v6.2.6.5 calculated at 01:49 PM on 02/24/2012 Alternative - 1 System Checksums Report Page 13 of 26

PSU ICE ARENA
BIM_PSU_ICE_ARENA.trc Project Name: Dataset Name:

APPENDIX F: Event Level Raising

Bedrock & Soil Excavation

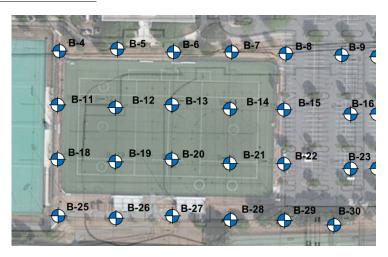


Figure 120: Boring Points on Site

Table 32: Rock Elevation Averages

Bore #	PT	Elevation	Bore #	PT	Elevation	Bore #	PT	Elevation
B-25	15	1159 4/5	B-18	25	1170	B-11	15	1170
B-26	20	1162 1/2	B-19	10	1170	B-12	10	1170
B-18	25	1170	B-11	15	1170	B-4	21	1170 1/2
B-19	10	1170	B-12	10	1170	B-5	16	1170 1/2
AVE	17 1/2	1165 4/7	AVE	15	1170	AVE	15 1/2	1170 1/4
B-26	20	1162 1/2	B-19	10	1170	B-12	10	1170
B-27	15	1165	B-20	15	1170	B-13	25	1170
B-19	10	1170	B-12	10	1170	B-5	16	1170 1/2
B-20	15	1170	B-13	25	1170	B-6	7	1176
AVE	15	1166 7/8	AVE	15	1170	AVE	14 1/2	1171 5/8
B-27	15	1165	B-20	15	1170	B-13	25	1170
B-28	10	1168	B-21	15	1170	B-14	25	1170
B-20	15	1170	B-13	25	1170	B-6	7	1176
B-21	15	1170	B-14	25	1170	B-7	13	1173 1/2
AVE	13 3/4	1168 1/4	AVE	20	1170	AVE	17 1/2	1172 3/8
B-28	10	1168	B-21	15	1170	B-14	25	1170
B-29	7	1169	B-22	2	1170 1/2	B-15	9	1170
B-21	15	1170	B-14	25	1170	B-7	13	1173 1/2
B-22	2	1170 1/2	B-15	9	1173	B-8	8	1172 1/2
AVE	8 1/2	1169 3/8	AVE	12 3/4	1170 7/8	AVE	13 3/4	1171 1/2
i						-		1
B-29	7	1169	B-22	2	1170 1/2	B-15	9	1170
B-30	6	1170	B-23	4	1171	B-16	5	1173 1/2
B-22	2	1170 1/2	B-15	9	1173	B-8	8	1172 1/2
B-23	4	1171	B-16	5	1173 1/2	B-9	2	1174
AVE	4 3/4	1170 1/8	AVE	5	1172	AVE	6	1172 1/2

Table 33: Current Design Excavation Amounts

Geotech Report Elevation (ft)	1170	
Entrance Elevation (ft)	1176	5/6
Excavation Level (ft)	1153	2/3
Ice Melt Pit Elevation Level (ft)	1152	2/3
Hydro Pit Elevation Level (ft)	1146	7/12
Elevator Elevation Level 1 (ft)	1150	1/2
Elevator Elevation Level 2 (ft)	1148	1/2

				Ave Sect Area							
	Ave Boring	Ave Rock	Sectional	Rock Depth	Rock Above	Rock Depth	CF Rock	CY Rock	Soil Depth	CF Soil	CY Soil
Boring Section	Elevation	Elevation	Area	Below 1170	/Below Exc Lvl	to be Rmvd					
B-25, 26, 18, 19	1165 4/7	1152 1/2	8500	17 1/2	1 1/6	0	0	0	12	102000	3778
B-25, 26, 32, 33			5100						12	61200	2267
B-26, 27, 19, 20	1166 7/8	1155	10000	15	-1 1/3	2	20000	741	12	120000	4445
B-26, 27, 33, 34			6000		-1 1/3	2	12000	445	12	72000	2667
B-27, 28, 20, 21	1168 1/4	1156 1/4	10000	13 3/4	-2 7/12	3	30000	1112	12	120000	4445
B-27, 28, 34, 35			6000		-2 7/12	3	18000	667	12	72000	2667
Elevator #3 Pit Level 1		1156 1/4	296	13 3/4	-5 3/4	4	1184	44	0	0	0
Elevator #3 Pit Level 2		1156 1/4	76	13 3/4	-7 3/4	2	152	6	0	0	0
B-28, 29, 21, 22	1169 3/8	1161 1/2	11000	8 1/2	-7 5/6	8	88000	3260	8	88000	3260
B-29, 30, 22, 23	1170 1/8	1165 1/4	12100	4 3/4	-11 7/12	12	145200	5378	5	60500	2241
Elevator #2 Pit Level 1		1165 1/4	307	4 3/4	-14 3/4	4	1228	46	0	0	0
Elevator #2 Pit Level 2		1165 1/4	64	4 3/4	-16 3/4	2	128	5	0	0	0
B-18, 19, 11, 12	1170	1155	8500	15	-1 1/3	2	17000	630	15	127500	4723
B-19, 20, 12, 13	1170	1155	10000	15	-1 1/3	2	20000	741	15	150000	5556
B-20, 21, 13, 14	1170	1150	10000	20	3 2/3	0	0	0	17	170000	6297
B-21, 22, 14, 15	1170 7/8	1157 1/4	10000	12 3/4	-3 7/12	4	40000	1482	14	140000	5186
B-22, 23, 15, 16	1172	1165	11000	5	-11 1/3	12	132000	4889	7	77000	2852
B-11, 12, 4, 5	1170 1/4	1154 1/2	5625	15 1/2	- 5/6	1	5625	209	16	90000	3334
B-12, 13, 5, 6	1171 5/8	1155 1/2	8500	14 1/2	-1 5/6	2	17000	630	17	144500	5352
Ice Melt Sump		1155 1/2	353	14 1/2	-2 5/6	1	353	14	0	0	0
B-13, 14, 6, 7	1172 3/8	1152 1/2	8500	17 1/2	1 1/6	0	0	0	19	161500	5982
B-14, 15, 7, 8	1171 1/2	1156 1/4	8500	13 3/4	-2 7/12	3	25500	945	16	136000	5038
Hydro Pit		1156 1/4	1170	13 3/4	-9 2/3	8	9360	347	0	0	0
B-15, 16, 8, 9	1172 1/2	1164	9350	6	-10 1/3	11	102850	3810	9	84150	3117
Elevator #1 Pit Level 1		1164	266	6	-13 1/2	4	1064	40	0	0	0
Elevator #1 Pit Level 2		1164	78	6	-15 1/2	2	156	6	0	0	0
	•			5	5	T-4-1	685580	25401		1976350	73207
						Total	CF	CY		CF	c c

Table 34: Event Level Raising Excavation Amounts

Geotech Report Elevation (ft)	1170	
Main Concourse Elevation (ft)	1176	5/6
Excavation Level (ft)	1156	5/6
Ice Melt Pit Elevation Level (ft)	1155	5/6
Hydro Pit Elevation Level (ft)	1149	3/4
Elevator Elevation Level 1 (ft)	1153	2/3
Elevator Elevation Level 2 (ft)	1151	2/3

Boring Section	Ave Boring Elevation	Ave Rock Elevation	Sectional Area	Ave Sec Area Rock Depth Below 1170	Rock Above /Below Exc Lvl	Rock Depth to be Rmvd	CF Rock to be Rmvd	CY Rock to be Rmvd	Soil Depth to be Rmvd	CF Soil to be Rmvd	CY Soil to be Rmvd
B-25, 26, 18, 19	1165 4/7	1152 1/2	8500	17 1/2	4 1/3	0	0	0	9	76500	2834
B-25, 26, 32, 33			5100						9	45900	1700
B-26, 27, 19, 20	1166 7/8	1155	10000	15	1 5/6	0	0	0	11	110000	4075
B-26, 27, 33, 34			6000						11	66000	2445
B-27, 28, 20, 21	1168 1/4	1156 1/4	10000	13 3/4	7/12	0	0	0	12	120000	4445
B-27, 28, 34, 35			6000						12	72000	2667
Elevator #3 Pit Level 1		1156 1/4	296	13 3/4	-2 7/12	3	888	33	0	0	C
Elevator #3 Pit Level 2		1156 1/4	76	13 3/4	-4 7/12	2	152	6	0	0	C
B-28, 29, 21, 22	1169 3/8	1161 1/2	11000	8 1/2	-4 2/3	5	55000	2038	8	88000	3260
B-29, 30, 22, 23	1170 1/8	1165 1/4	12100	4 3/4	-8 5/12	9	108900	4034	5	60500	2241
Elevator #2 Pit Level 1		1165 1/4	307	4 3/4	-11 7/12	4	1228	46	0	0	C
Elevator #2 Pit Level 2		1165 1/4	64	4 3/4	-13 7/12	2	128	5	0	0	C
B-18, 19, 11, 12	1170	1155	8500	15	1 5/6	0	0	0	14	119000	4408
B-19, 20, 12, 13	1170	1155	10000	15	1 5/6	0	0	0	14	140000	5186
B-20, 21, 13, 14	1170	1150	10000	20	6 5/6	0	0	0	14	140000	5186
B-21, 22, 14, 15	1170 7/8	1157 1/4	10000	12 3/4	- 5/12	1	10000	371	14	140000	5186
B-22, 23, 15, 16	1172	1165	11000	5	-8 1/6	9	99000	3667	7	77000	2852
B-11, 12, 4, 5	1170 1/4	1154 1/2	5625	15 1/2	2 1/3	0	0	0	14	78750	2917
B-12, 13, 5, 6	1171 5/8	1155 1/2	8500	14 1/2	1 1/3	0	0	0	15	127500	4723
Ice Melt Sump		1155 1/2	353	14 1/2	1/3	0	0	0	1	353	14
B-13, 14, 6, 7	1172 3/8	1152 1/2	8500	17 1/2	4 1/3	0	0	0	16	136000	5038
B-14, 15, 7, 8	1171 1/2	1156 1/4	8500	13 3/4	7/12	0	0	0	15	127500	4723
Hydro Pit		1156 1/4	1170	13 3/4	-6 1/2	7	8190	304	1	1170	44
B-15, 16, 8, 9	1172 1/2	1164	9350	6	-7 1/6	8	74800	2771	9	84150	3117
Elevator #1 Pit Level 1		1164	266	6	-10 1/3	4	1064	40	0	0	C
Elevator #1 Pit Level 2		1164	78	6	-12 1/3	2	156	6	0	0	C
						Total	358286 CF	13275 CY		1810323 CF	67061 CY

Seating Capacity & Price Points

Table 35: Existing Seating Layout

										TE ICE A							
-									Counts e Coun	<i>per Seatin</i> t	y Section						
	Santina Santina	18" Bench	19" Seat	20° Front Row Seat	19" Gub Seat	21° Club Seat	24" Suite Seat	36' Loge Seat	21' Press Seat	19" Seat on Removable Platform	20° Seat on Removable Platform	High Top Seat	Coaches Seating	Wheelchair Seat	Companion	T-4-1	Mada
-	Seating Section 105	н	183	N 55	н	7	~	ED)	2	4 4 0	4 6 0	7	0 %	> 15	0 %	Total 190	Notes
	106		359	20												379	
- 1	107		289													289	
- 1	108		359	20												379	
	109		262	10												272	- 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	110 111		262 212	12 12												274 224	Removable platform seatin Removable platform seatin
	112		245	10						16	2					273	Kelliovable platform Seatin
- 1	113		245	10						16	2					273	
<u>po</u>	114		365	25												390	
늁	115		307	10					16							333	
Š	116 117		365 165	25										3	3	390 171	
<u>8</u>	205		103					8						,		8	
ē	206							14						2		16	
Lower Level Seating	207							7						4		15	
ا ۆ	208							14						2		16	
-	209 210							9						5	-	10 10	
	210													5	_	10	
	212													8		16	
	213							14						1		15	
- 1	214													8	8	16	
	215								14				4	_		18	
	216 217							7						8	8	16 8	
- 1	Sec. Total	0	3618	161	0	0	0	73	30	32	4	0	4	48	41	4011	
	301	307	3010	101	U		Ů	75	30	32		U		2		311	
Student Seating	302	412												6	6	424	
Section	303	307												2		311	
	Sec. Total	1026	0	0	0	0	0	0	0	0	0	0	0	10	10		
	304				10											10	
ь0	305 306				11 51							17		3	3	17 68	
Upper Level Club Seating	307				62							28				90	
Sea	308				51							17				68	
e e	309				65							22				87	
ō	310					45						14				59	
- Ke	311					41 16						12		_	-	53	
r Le	312 313					54						14				26 68	
<u>a</u>	314					44						12				56	
å l	315					41						12				53	
	316					31						9				40	
	Sec. Total	0	0	0	250	272	0		0	0	0		0	8	8	695	
	Corner Suite 1						10 12					10 5		2		22 18	
	Suite 1A Suite 1B						12					4		1		17	
	Suite 2						10					3		1		14	
	Suite 3						12					4		1		17	
	Suite 4						12					4		1		17	
	Suite 5						12 12					4		1		17	
	Suite 6 Suite 7						12					4		1		17 17	
(A	Suite 8						12					4		1		17	
ite	Suite 9						12					4		1		17	
Su	Suite 10						12					4		1		17	
Level Suites	Suite 11						10					3		1		14	
, Le	Suite 12A Suite 12B						12 12					5 5		1		18 18	
	Corner Suite 2						10					10		2		22	
_ <u>_</u>	Sec. Total	0	0	0	0	0			0	0	0			_	0	279	
	Sub-Total		3618	161	250	272			30	32	4		4	84		6031	
J	AUX 201	97														97	
Comm. Ice Rink	AUX 202	94												6	6	106	
E E	AUC 203	97														97	
	Sec. Total	288	0	0	0	0	0	0	0	0	0	0	0	6	6	300]
ទី ខ	Sub-Total	288	0		0	0			0	0	0	0		6		300	

Table 36: Proposed Alternative Seating Layout

										er Seating	Section						
Serving Serving Servin																	
		11		Q 55	1	7	2	m)	2	H & C	4 5 5	Ŧ	0 %	2 0	S		Notes
				20									_				
				20													
				20													
																	Removable platform sea
	111																
	112		285	10						16	2					313	
										16	2						
									16								
				25					_				_				
			180					0					_	_	3		
								_							4		
															4		
								=							3		
								0						=	1		
	210														1	2	
								0							2	4	
															2		
								0							2		
					$\overline{}$									3	3		
					$\overline{}$				14				- 4	2	2		
								0						=	1		
		0	3895	161	0	0	0	0	30	32	4	0	4	_	31		
			3033	202	,		J	_		92					2		
															6		
	303	307												2	2	311	
	Sec. Total	1003	0	0	0	0	0	0	0	0	0	0	0	10	10	1023	
														3	3		
•																	
					03	45											
														5	5		
	313																
-																	
7												12				53	
						_						9				40	
_		0	0	0	250	_		0	0	0	0	9 157	0		8	40 695	
	Corner Suite 1	0	0	0	250	_	10	0	0	0	0	9 157 10	0	2	8	40 695 22	
	Corner Suite 1 Suite 1A	0	0	0	250	_	10 12	0	0	0	0	9 157 10 5	0	2	8	40 695 22 18	
	Corner Suite 1 Suite 1A Suite 1B	0	0	0	250	_	10 12 12	0	0	0	0	9 157 10 5 4	0	2 1 1	8	40 695 22 18 17	
	Corner Suite 1 Suite 1A Suite 1B Suite 2	0	0	0	250	_	10 12 12 10	0	0	0	0	9 157 10 5 4 3	0	1 1 1	8	40 695 22 18 17 14	
	Corner Suite 1 Suite 1A Suite 1B Suite 2 Suite 3	0	0	0	250	_	10 12 12 10 12	0	0	0	0	9 157 10 5 4 3	0	1 1 1	8	40 695 22 18 17 14	
	Corner Suite 1 Suite 1A Suite 1B Suite 2 Suite 3 Suite 4	0	0	0	250	_	10 12 12 10 12 12 12	0	0	0	0	9 157 10 5 4 3 4 4 4	0	1 1 1 1 1	8	40 695 22 18 17 14 17 17	
	Corner Suite 1 Suite 1A Suite 1B Suite 2 Suite 3 Suite 4 Suite 5 Suite 6	0	0	0	250	_	10 12 12 10 12 12 12 12	0	0	0	0	9 157 10 5 4 3 4 4 4	0	1 1 1 1 1 1	8	40 695 22 18 17 14 17 17 17	
	Corner Suite 1 Suite 1A Suite 1B Suite 2 Suite 3 Suite 4 Suite 5 Suite 6 Suite 7	0	0	0	250	_	10 12 12 10 12 12 12 12 12	0	0	0	0	9 157 10 5 4 3 4 4 4 4	0	1 1 1 1 1 1 1	8	40 695 22 18 17 14 17 17 17 17	
	Corner Suite 1 Suite 1A Suite 1B Suite 2 Suite 3 Suite 4 Suite 5 Suite 6 Suite 7 Suite 8	0	0	0	250	_	10 12 12 10 12 12 12 12 12 12	0	0	0	0	9 157 10 5 4 3 4 4 4 4 4	0	1 1 1 1 1 1 1 1	8	40 695 22 18 17 14 17 17 17 17 17	
	Corner Suite 1 Suite 1A Suite 1B Suite 2 Suite 3 Suite 4 Suite 5 Suite 6 Suite 7 Suite 7 Suite 8 Suite 9	0	0	0	250	_	10 12 12 10 12 12 12 12 12 12 12 12	0	0	0	0	9 157 10 5 4 3 4 4 4 4 4 4	0	2 1 1 1 1 1 1 1 1 1	8	40 695 22 18 17 14 17 17 17 17 17 17 17	
	Corner Suite 1 Suite 1A Suite 1B Suite 2 Suite 3 Suite 4 Suite 5 Suite 6 Suite 7 Suite 8 Suite 9 Suite 9	0	0	0	250	_	10 12 12 10 12 12 12 12 12 12 12 12 12	0	0	0	0	9 157 10 5 4 3 4 4 4 4 4 4 4	0	2 1 1 1 1 1 1 1 1 1 1	8	40 695 22 18 17 14 17 17 17 17 17 17 17 17	
	Corner Suite 1 Suite 1A Suite 1B Suite 2 Suite 3 Suite 4 Suite 5 Suite 5 Suite 6 Suite 7 Suite 8 Suite 9 Suite 10 Suite 11	0	0	0	250	_	10 12 10 12 12 12 12 12 12 12 12 12 12	0	0	0	0	9 157 10 5 4 3 4 4 4 4 4 4 4 4 4 3	0	2 1 1 1 1 1 1 1 1 1 1 1 1	8	40 695 22 18 17 14 17 17 17 17 17 17 17 17 17	
	Corner Suite 1 Suite 1A Suite 1B Suite 2 Suite 2 Suite 3 Suite 4 Suite 5 Suite 6 Suite 7 Suite 8 Suite 9 Suite 10 Suite 10 Suite 12A	0	0	0	250	_	10 12 12 10 12 12 12 12 12 12 12 12 12 12 12	0	0	0	0	9 157 10 5 4 3 4 4 4 4 4 4 4 4 4 4 4 4 5	0	1 1 1 1 1 1 1 1 1 1 1 1	8	40 695 22 18 17 14 17 17 17 17 17 17 17 17 17 18	
	Corner Suite 1 Suite 1A Suite 1B Suite 2 Suite 3 Suite 4 Suite 5 Suite 6 Suite 7 Suite 7 Suite 9 Suite 10 Suite 11 Suite 12 Suite 12 Suite 12 Suite 12	0	0	0	250	_	10 12 10 12 12 12 12 12 12 12 12 12 12 12 12 12	0	0	0	0	9 157 10 5 4 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	0	1 1 1 1 1 1 1 1 1 1 1 1 1	8	40 695 22 18 17 14 17 17 17 17 17 17 17 17 17 18 18	
	Corner Suite 1 Suite 1A Suite 1B Suite 2 Suite 3 Suite 4 Suite 5 Suite 5 Suite 6 Suite 7 Suite 8 Suite 10 Suite 11 Suite 12A Suite 12A Corner Suite 2					272	10 12 12 10 12 12 12 12 12 12 12 12 12 12 12 12 12					9 157 10 5 4 3 4 4 4 4 4 4 4 4 4 5 5 10 5 10 10 10 10 10 10 10 10 10 10 10 10 10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		40 695 22 18 17 14 17 17 17 17 17 17 17 17 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19	
	Corner Suite 1 Suite 1A Suite 1B Suite 2 Suite 3 Suite 4 Suite 5 Suite 5 Suite 6 Suite 7 Suite 8 Suite 9 Suite 10 Suite 11 Suite 12A Suite 12A Suite 12B Corner Suite 2 Sec. Total	0	0	0	0	272	10 12 12 10 12 12 12 12 12 12 12 12 12 12 10 12 10 12	0	0	0	0	9 157 10 5 4 4 4 4 4 4 4 4 4 7 5 5 10 7 7	0	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	40 695 22 18 17 14 17 17 17 17 17 17 17 17 17 18 18 18 22 279	
	Corner Suite 1 Suite 1A Suite 1B Suite 2 Suite 3 Suite 4 Suite 5 Suite 6 Suite 7 Suite 8 Suite 9 Suite 10 Suite 10 Suite 11 Suite 12A Suite 12B Corner Suite 2 Sec. Total	0 1003	0	0	0	272	10 12 12 10 12 12 12 12 12 12 12 12 12 12 10 12 10 12	0	0	0	0	9 157 10 5 4 4 4 4 4 4 4 4 4 7 5 5 10 7 7	0	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	40 695 22 18 17 14 17 17 17 17 17 17 17 17 17 18 18 18 22 279 6185	
	Corner Suite 1 Suite 1A Suite 1B Suite 1B Suite 2 Suite 3 Suite 4 Suite 5 Suite 6 Suite 7 Suite 8 Suite 9 Suite 10 Suite 11 Suite 12A Suite 128 Corner Suite 2 Sec. Total AUX 201 AUX	0 1003 97	0 3895	0	0	272	10 12 12 10 12 12 12 12 12 12 12 12 12 12 10 12 10 12	0	0	0	0	9 157 10 5 4 4 4 4 4 4 4 4 4 7 5 5 10 7 7	0	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 188 67	0 49	40 695 22 18 17 14 17 17 17 17 17 17 17 17 18 18 18 22 279 6185 97	
	Corner Suite 1 Suite 1A Suite 1B Suite 2 Suite 3 Suite 4 Suite 5 Suite 6 Suite 7 Suite 8 Suite 10 Suite 11 Suite 11 Suite 12A Suite 12A Suite 12B Corner Suite 2 Sec. Total AUX 201 AUX 202	0 1003 97 94	0 3895	0	0	272	10 12 12 10 12 12 12 12 12 12 12 12 12 12 10 12 10 12	0	0	0	0	9 157 10 5 4 4 4 4 4 4 4 4 4 7 5 5 10 7 7	0	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 188 67	0 49	40 695 22 18 17 14 17 17 17 17 17 17 17 18 18 22 279 6185 97 106	
Secretary Secretary Secretary Secretary Secretary Secretary Secretary Secretary Secretary																	
Seculing Section 15																	

Table 37: Price Comparisons

	Donn State Ice Aren	o Single Con	o Ticket Cales I	Profite
	Penn State Ice Aren	a - Siligle Gall	ie ricket sales i	Piones.
	Glass Seats:	161	seats	
		\$ 3,220.00	per game	
	Lower Bowl:		seats	
		\$40,068.00	per game	
S	Club Seats:	695	seats	
EXISTING		\$13,900.00	per game	
X	Suite Level Seats:	279	seats	
		\$11,160.00	per game	
	*Student Section:	1,046	seats	
		\$ 5,230.00		
	*Assumed \$5 dollar	student ticker	ts	
	CRAND TOTAL	Å 72 F 70 00		
	GRAND TOTAL	\$73,578.00	per game	
	**Ticket Prices are	based on Noth	e Dame ice Hoc	key ficket Prices
	Penn State Ice Aren	a - Single Gam	ne Ticket Sales I	Profits:
		_		Profits:
	Penn State Ice Aren Glass Seats:	161	seats	Profits:
	Glass Seats:	161 \$ 3,220.00	seats per game	Profits:
		161 \$ 3,220.00 3993	seats per game seats	Profits:
ËĐ	Glass Seats: Lower Bowl:	161 \$ 3,220.00 3993 \$41,926.50	seats per game seats per game	Profits:
OSED	Glass Seats:	161 \$ 3,220.00 3993 \$41,926.50 695	seats per game seats per game seats	Profits:
OPOSED	Glass Seats: Lower Bowl: Club Seats:	161 \$ 3,220.00 3993 \$41,926.50 695 \$13,900.00	seats per game seats per game seats per game seats per game	Profits:
ROPOSED	Glass Seats: Lower Bowl:	161 \$ 3,220.00 3993 \$41,926.50 695 \$13,900.00 279	seats per game seats per game seats per game seats per game seats	Profits:
PROPOSED	Glass Seats: Lower Bowl: Club Seats: Suite Level Seats:	161 \$ 3,220.00 3993 \$41,926.50 695 \$13,900.00 279 \$11,160.00	seats per game	Profits:
	Glass Seats: Lower Bowl: Club Seats:	161 \$ 3,220.00 3993 \$41,926.50 695 \$13,900.00 279 \$11,160.00 1,023	seats per game seats	Profits:
	Glass Seats: Lower Bowl: Club Seats: Suite Level Seats: *Student Section:	161 \$ 3,220.00 3993 \$41,926.50 695 \$13,900.00 279 \$11,160.00 1,023 \$ 5,115.00	seats per game seats	Profits:
	Glass Seats: Lower Bowl: Club Seats: Suite Level Seats:	161 \$ 3,220.00 3993 \$41,926.50 695 \$13,900.00 279 \$11,160.00 1,023 \$ 5,115.00	seats per game seats	Profits:

Sightline Sections

Figure 121: Student Section - Section "E"

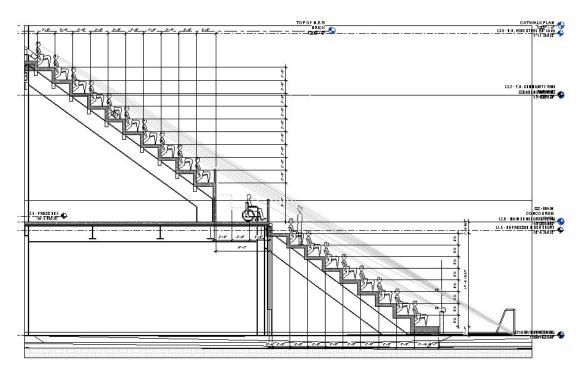
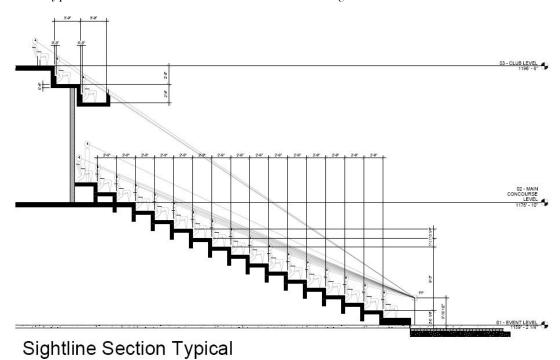



Figure 122: Typical Section - Continuous Lower Bowl Seating

Two-Way Post-Tensioned Flat Plate Calculations

Figure 123: Constructability Review

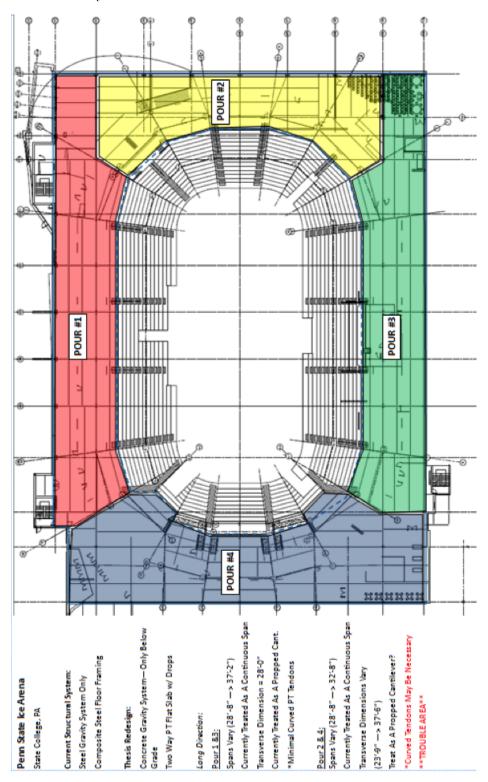


Figure 124: Two-Way PT Flat Plate - Tendon Layout

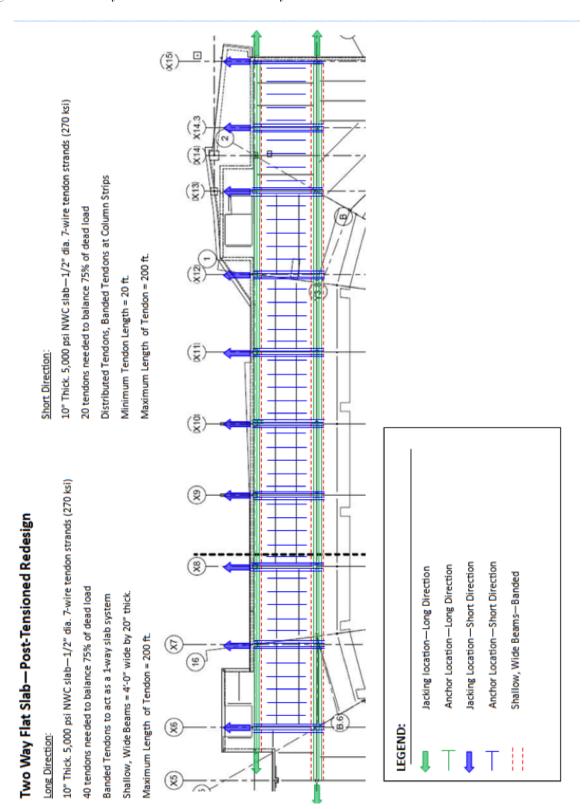
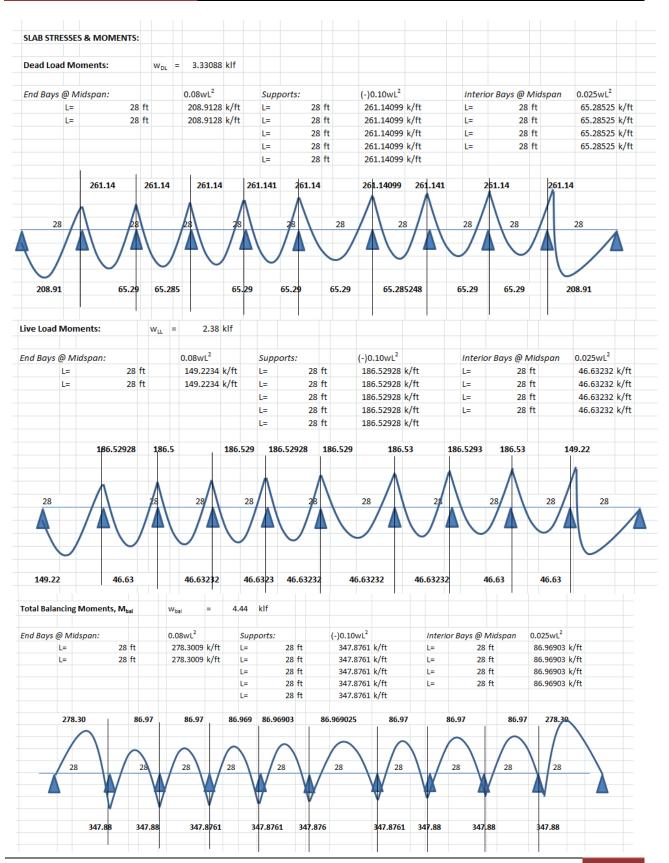


Table 38: Two-Way PT Flat Plate Calculations


			oned Slab S	yst	Cem															
_	Josh Proga																			
Date:	3/25/2012						=	INPUTS												
Continuous	Span - Mai	n Co	oncourses -Sho	ort D	Direction															
Exterior Spa	ans:	Lor	ng Direction	E	Exterior S	oans:	Sh	ort Direction	DESIGN C	RITERIA:						TENDON	SPI	ECIFIC	CATIO	NS:
L=	28	ft	X5-X6		L=	23 792	ft	X5-X6	Superimp	osed DL:	_	15	psf			Diamete	or =		0.5	in
			X14.3-X15		_			X14.3-X15		Live Load:		100				# Wires				wire
									f'c:		=			(NWC)		A	=		0.153	in ²
Interior Spa	ans:			-	Interior Sp	ans:			R		=	0.85		,		fpu	=	27	0,000	psi
•									f'c _i		_	4250	nsi				_			•
L=	28	ft	X6-X7		L=	37 17	ft	X6-X7	fpu			270,000				COLUMN	J SIZ	res.		
			X7-X8					X7-X8	fp _v			240,000				COLOIVII	1 312			
									. ,							1			10	
			X8-X9					X8-X9	fp _e		=	159,000	-			Length	=		18	
			X9-X10					X9-X10	E _{ps}		=	29,000				Width	=		18	ın
			X10-X11					X10-X11	f _y		=	60,000								
			X11-X12					X11-X12	Es		=	29,000								
	28	ft	X12-X13			37.17	ft	X12-X13		< 200 psi d										
	28	ft	X13-X14.3			28.67	ft	X13-X14.3	E-W: f _{c,ma}	_x < 350 psi d	ue	to net pre	essu	res afte	r losses					
Maximum f	f'c due to Co	mb	ined Stresses		=	2250	psi													
TD141 617E																				
I KIAL SIZE I	I/h	HICK =	NESS: 45																	
		=	7.47 ii	,		*TRY	10) inch Slab Thio	rknossi											
		Ē	7.47	_		11(1	10	men sido min	MIC33.											
UNIFORML	Y DISTRIBU	TED	DEAD LOAD:			MATERIAI	ç.													
						THE COURT														
	W _d	=	140 p	sf		P _{eff}	=	24.327	k/tendon											
		=		sf				24.327	k/tendon											
	AMETERS:		140 p			P _{eff}		24.327												
			140 p	С	Class U (AC	P _{eff}	=		Compress	ion Stresse				2550	psi					
	AMETERS:		140 p	С		P _{eff}	=			ion Stresse		=		2550 196	psi psi					
,	AMETERS: Allowable S	tres	140 p	C	At Time of	P _{eff} (1 18.3.3) Jacking (A	= CI 1	8.4.1)	Compress Tension St	ion Stresse tresses		=		196	psi					
,	AMETERS:	tres	140 p	C	At Time of	P _{eff}	= CI 1	8.4.1)	Compress Tension St	ion Stresse tresses ion Stresse		=	:	196 2250	psi psi					
,	AMETERS: Allowable S	tres	140 p	C	At Time of	P _{eff}	= CI 1	8.4.1)	Compress Tension St	ion Stresse tresses ion Stresse		=	:	196	psi					
,	AMETERS: Allowable S At Service L	oad	140 p	C A	At Time of ACI 18.4.2(P _{eff} II 18.3.3) Jacking (A a) & ACI 18	= CI 1	8.4.1)	Compress Tension St	ion Stresse tresses ion Stresse tresses	5 :	=		196 2250 424	psi psi psi					
,	AMETERS: Allowable S	oad	140 p	C A	At Time of	P _{eff} II 18.3.3) Jacking (A a) & ACI 18	= CI 1	8.4.1)	Compress Tension St	ion Stresse tresses ion Stresse	5 :	=	125	196 2250	psi psi					
, ,	AMETERS: Allowable S At Service L Precompres	oad	sses:	C A	At Time of ACI 18.4.2(ACI 18.12.	P _{eff} II 18.3.3) Jacking (A a) & ACI 18	CI 1	8.4.1)	Compress Tension St Compress Tension St	ion Stresse tresses ion Stresse tresses	5 :	=	125	196 2250 424 psi	psi psi psi min					
, , , , , , ,	AMETERS: Allowable S At Service L Precompres	oad	sses: s: n Limits:	C A	At Time of ACI 18.4.2(ACI 18.12.4 100 9	P _{eff} II 18.3.3) Jacking (A a) & ACI 18 4)	CI 1	8.4.1)	Compress Tension St Compress Tension St	ion Stresse tresses ion Stresse tresses	5 :	=	125	196 2250 424 psi	psi psi psi min					
, , , , , ,	AMETERS: Allowable S At Service L Precompres	oad	sses: s: n Limits:	C A A	At Time of ACI 18.4.2(ACI 18.12.	P _{eff} II 18.3.3) Jacking (A a) & ACI 18 4)	CI 1	8.4.1)	Compress Tension St Compress Tension St	ion Stresse tresses ion Stresse tresses	5 :	=	125	196 2250 424 psi	psi psi psi min					
I DAD BALAN	AMETERS: Allowable S At Service L Precompres ICE CONDIT Balanced De	oad oad ion	sses: s: n Limits:	C A A	At Time of ACI 18.4.2(ACI 18.12.4 100 9	P _{eff} II 18.3.3) Jacking (A a) & ACI 18 4)	CI 1	8.4.1)	Compress Tension St Compress Tension St	ion Stresse tresses ion Stresse tresses	5 :	=	125	196 2250 424 psi	psi psi psi min					
OAD BALAN	AMETERS: Allowable S At Service L Precompres ICE CONDIT Balanced De	oad oad ion	sses: ss: n Limits: Load =	C A A	ACI 18.4.2(ACI 18.12. 100 9	P _{eff} II 18.3.3) Jacking (A a) & ACI 18 4) % - Target	CI 1	8.4.1) 3 anced Dead Lo	Compress Tension St Compress Tension St	ion Stresse tresses ion Stresse tresses	5 :	=	125	196 2250 424 psi	psi psi psi min					
OAD BALAN	AMETERS: Allowable S At Service L Precompres ICE CONDIT Balanced De JIREMENTS: Restrained	oad ssion ION ead	140 p sses: ss: n Limits: Load =	C A A	ACI 18.4.2(ACI 18.4.2) ACI 18.12. 100 9 140	P _{eff} II 18.3.3) Jacking (A a) & ACI 18 4) % - Target	CI 1	8.4.1) Bottom	Compress Tension St Compress Tension St	ion Stresse tresses ion Stresse tresses	5 :	=	125	196 2250 424 psi	psi psi psi min					
OAD BALAN	AMETERS: Allowable S At Service L Precompres ICE CONDIT Balanced De	oad ssion ION ead	140 p sses: ss: n Limits: Load =	C A A	ACI 18.4.2(ACI 18.4.2(ACI 18.12. 100 9 140 1 0.75 1 1.5 1	P _{eff} II 18.3.3) Jacking (A a) & ACI 18 4) % - Target in	CI 1	8.4.1) Bottom Top	Compress Tension St Compress Tension St	ion Stresse tresses ion Stresse tresses	5 :	=	125	196 2250 424 psi	psi psi psi min					
OAD BALAN	AMETERS: Allowable S At Service L Precompres ICE CONDIT Balanced De JIREMENTS: Restrained	oad ssion ION ead	140 p sses: ss: n Limits: Load =	C A A	ACI 18.4.2(ACI 18.4.2) ACI 18.12. 100 9 140	P _{eff} II 18.3.3) Jacking (A a) & ACI 18 4) % - Target in	CI 1	8.4.1) Bottom	Compress Tension St Compress Tension St	ion Stresse tresses ion Stresse tresses	5 :	=	125	196 2250 424 psi	psi psi psi min					
DAD BALAN E OVER REQU	AMETERS: Allowable S At Service L Precompres ICE CONDIT Balanced De JIREMENTS: Restrained	oad ssion ION ead	140 p sses: ss: n Limits: Load =	C A A	ACI 18.4.2(ACI 18.4.2(ACI 18.12. 100 9 140 1 0.75 1 1.5 1	P _{eff} II 18.3.3) Jacking (A a) & ACI 18 4) % - Target in	CI 1	8.4.1) Bottom Top	Compress Tension St Compress Tension St	ion Stresse tresses ion Stresse tresses	5 :	=	125	196 2250 424 psi	psi psi psi min					
DAD BALAN E OVER REQU	AMETERS: Allowable S At Service L Precompres ICE CONDIT Balanced De JIREMENTS: Restrained	oad ssion ION ead	140 p sses: ss: n Limits: Load =	C A A	ACI 18.4.2(ACI 18.4.2(ACI 18.12. 100 9 140 1 0.75 1 1.5 1	P _{eff} II 18.3.3) Jacking (A a) & ACI 18 4) % - Target in	CI 1	8.4.1) Bottom Top	Compress Tension St Compress Tension St	ion Stresse tresses ion Stresse tresses	5 :	=	125	196 2250 424 psi	psi psi psi min					
DAD BALAN E OVER REQU	AMETERS: Allowable S At Service L Precompres ICE CONDIT Balanced De JIREMENTS: Restrained	oad oad ssion ION ead :	140 p sses: ss: n Limits: Load = ss = s	C A A (//	ACI 18.4.2(ACI 18.4.2(ACI 18.12. 100 9 140 1 0.75 1 0.75 1	P _{eff} II 18.3.3) Jacking (A a) & ACI 18 4) % - Target in	= CI 1	8.4.1) Bottom Top	Compress Tension St Compress Tension St	ion Stresses tresses ion Stresses tresses P/A	5 :	= = = = = = = = = = = = = = = = = = = =	125	196 2250 424 psi	psi psi psi min					
OAD BALAN OVER REQU I COVER REQU I COVER REQU I I I I I I I I I I I I I	AMETERS: Allowable S At Service L Precompres ICE CONDIT Balanced De DIREMENTS: Restrained Unrestrained CATIONS:	oad oad ssion iON ead : Slabed Sl	140 p sses: ss: n Limits: Load = abs =	C A A (//	ACI 18.4.2(ACI 18.4.2(ACI 18.12. 100 9 140 1 0.75 1 0.75 1	P _{eff} II 18.3.3) Jacking (A a) & ACI 18 4) % - Target in in	= CI 1	8.4.1) Bottom Top	Compress Tension Si Compress Tension Si ad	ion Stresses tresses ion Stresses tresses P/A	s	= = = = = = = = = = = = = = = = = = = =	125 300	196 2250 424 psi	psi psi psi min					
OAD BALAN OVER REQU ENDON LOC	AMETERS: Allowable S At Service L Precompres ICE CONDIT Balanced De DIREMENTS: Restrained Unrestrained CATIONS: Tendon Loc Exterior Sug	oad ssion lON ead : Slab ed SI	140 p sses: ss: n Limits: Load = abs = n rt - Anchor	C A A (//	ACI 18.4.2(ACI 18.4.2(ACI 18.12. 100 9 140 1 0.75 1 0.75 1	P _{eff} II 18.3.3) Jacking (A a) & ACI 18 4) % - Target in in in	= CI 1	8.4.1) Bottom Top	Compress Tension Si Compress Tension Si ad	ion Stresses tresses ion Stresses tresses P/A	=	= = = = = = = = = = = = = = = = = = = =	125 300	196 2250 424 psi	psi psi psi min					
OVER REQUIENT OVER REQUIENT OVER REQUIENT OF THE PROPERTY OF T	AMETERS: Allowable S At Service L Precompres ICE CONDIT Balanced De DIREMENTS: Restrained Unrestrained CATIONS:	oad ssion iON ead sSlab ed Sl	140 p sses: sses: n Limits: Load = labs = n rt - Anchor t - Top	C A A (//	ACI 18.4.2(ACI 18.4.2(ACI 18.12. 100 9 140 1 0.75 1 0.75 1	P _{eff} II 18.3.3) Jacking (A a) & ACI 18 4) % - Target in in in	= CI 1	8.4.1) Bottom Top	Compress Tension Si Compress Tension Si ad	ion Stresses tresses ion Stresses tresses P/A	=	= = = = = = = = = = = = = = = = = = = =	125 300	196 2250 424 psi	psi psi psi min					

BIM THESIS PROPOSAL

HPR Integrated Design

CTION	PROPERT	IES:	TRIAL SLAB T	HIC	KNESS	=	10	in				
	Chart	F4	C		_		4054		-	FOTICE	11105	
	Start	End	Span		+		AREA	-	-	ECTION		
	X5	X6	28 ft		- 1	=	3360			=	5600	-
	X6	Х7	28 ft		Α	=	3360			=	5600	
	X7	X8	28 ft		Α	=	3360		•		5600	
	X8	X9	28 ft		Α	=	3360				5600	
	X9	X10	28 ft		Α	=	3360		-	=	5600	in ³
	X10	X11	28 ft		Α	=	3360		•	=	5600	in ³
	X11	X12	28 ft		Α	=	3360	in²	S	=	5600	in³
	X12	X13	28 ft		Α	=	3360	in²	s	=	5600	in ³
	X13	X14.3	28 ft		Α	=	3360	in²	s	=	5600	in ³
	X14.3	X15	28 ft		Α	=	3360	in²	s	=	5600	in ³
LOAD E	BALANCIN	IG:										
Unifor	Ī	buted Dead										
	W _d	=		psf				_				
Load B	alancing (Conditions:			Target	Ва	lanced De	ad	Loa	ad		
	Wb	=	140	psf								
Prestre		Required To	Balance Targ		ead Lo	ad						
	a _{end}	=	5.25	in								
	a _{int}	=	8	in								
								_				
a _{end}	<	a _{int}			End S	pai	n Controls	╛				
	w_b	=	2736.08	plf								
		=	2.73608	klf								
Tendo			unteract End		Load							
	Р	=	612.88	k								
D												
Precon	•	Allowance	To Achieve			512	.88		(
	Tenuc	=	25.19	ton)12	.00	٦,				
	Numh	er of Tendo		ten	uons			26 t	Δn	ndons		
	Wunte	ici oi rendo	113.					20 (.21	100113		
	P _{actual}	=	632,502	k								
	- actual		302.002	-								
Adjust	Balanced	End Load:										
,	w _b	=	2.824	k								
Actual		ression Stres										
	Pactual			psi	>125	osi	?	(Οk			
	- actual/		200		<350				Οk			
Check	Interior S	pan:					-	Ì	- 14			
	Р	=	402.20	k				(Οk			
		st Case Span										

Take End S	ipan Force	Into Inte	erior Spans &	Che	ck Amount of Load Tl	nat Will Be	Balanced:	
	W _b	=	4.303	klf				
	/	_	02 600/	_	100%	Ok		

BIM THESIS PROPOSAL

HPR Integrated Design

Mids	span Stresse	s:								Supp	ort Stresse	s:								
Ir	nterior Span	s:																		
L=	28 ft	f _{top}	=	-228.22	psi	<	3000	psi?	Ok	L=	28 1	ft	f _{top}	=	-374.106	psi	<	196	psi?	Ok
		f _{bottom}	=	-234.71	psi	<	2550	psi?	Ok				f _{bottom}	=	-2.3837	psi	<	2550	psi?	Ok
L=	28 ft	f _{top}	=	-141.78	psi	<	3000	psi?	Ok	L=	28 1	ft	f _{top}	=	-374.106	psi	<	196	psi?	Ok
		f _{bottom}	=	-234.71	psi	<	2550	psi?	Ok				f _{bottom}	=	-2.3837	psi	<	2550	psi?	Ok
L=	28 ft	f _{top}	=	-141.78	psi	<	3000	psi?	Ok	L=	28 f	ft	f _{top}	=	-374.106	psi	<	196	psi?	Ok
		f _{bottom}	=	-234.71	psi	<	2550	psi?	Ok				f _{bottom}	=	-2.3837	psi	<	2550	psi?	Ok
L=	28 ft	f _{top}	=	-141.78	psi	<	3000	psi?	Ok	L=	28 f	ft	f _{top}	=	-374.106	psi	<	196	psi?	Ok
		f _{bottom}	=	-234.71	psi	<	2550	psi?	Ok				f _{bottom}	=	-2.3837	psi	<	2550	psi?	Ok
										L=	28 f	ft	f _{top}	=	-374.106	psi	<	196	psi?	Ok
													f _{bottom}	=	-2.3837	psi	<	2550	psi?	Ok
E	nd Spans:																			
L=	28 ft	f _{top}	=	88.3499	psi	<	3000	psi?	Ok											
		f _{bottom}	=	-336.93	psi	<	2550	psi?	Ok											
L=	28 ft	f _{top}	=	-39.556	psi	<	3000	psi?	Ok											
		f _{bottom}	=	-1232.3	psi	<	2550	psi?	Ok											

Mids	pan Str	esse	es:								Su	ipport St	resses:								
II	nterior S	par	is:																		
L=	28	ft	f _{top}	=	-241.71	psi	<	2250	psi?	Ok	L=		28 ft	f _{top}	=	25.60001	psi	<	424	psi?	Ok
			f _{bottom}	=	-134.78	psi	<	424	psi?	Ok				f _{bottom}	=	-402.089	psi	<	2250	psi?	Ok
L=	28	ft	f _{top}	=	-241.71	. psi	<	2250	psi?	Ok	L=		28 ft	f _{top}	=	25.60001	psi	<	424	psi?	Ok
			f _{bottom}	=	-134.78	psi	<	424	psi?	Ok				f _{bottom}	=	-402.089	psi	<	2250	psi?	Ok
L=	28	ft	f _{top}	=	-241.71	. psi	<	2250	psi?	Ok	L=		28 ft	f _{top}	=	25.60001	psi	<	424	psi?	Ok
			f _{bottom}	=	-134.78	psi	<	424	psi?	Ok				f _{bottom}	=	-402.089	psi	<	2250	psi?	Ok
L=	28	ft	f _{top}	=	-241.71	. psi	<	2250	psi?	Ok	L=		28 ft	f _{top}	=	25.60001	psi	<	424	psi?	Ok
			f _{bottom}	=	-134.78	psi	<	424	psi?	Ok				f _{bottom}	=	-402.089	psi	<	2250	psi?	Ok
											L=		28 ft	f _{top}	=	25.60001	psi	<	424	psi?	Ok
														f _{bottom}	=	-402.089	psi	<	2250	psi?	Ok
E	nd Spar	ıs:																			
L=	28	ft	f _{top}	=	-359.32	psi	<	2250	psi?	Ok											
			f _{bottom}	=	-17.169	psi	<	424	psi?	Ok											
L=	28	ft	f _{top}	=	-359.32	psi	<	2250	psi?	Ok											
			f _{bottom}	=	-17.169	psi	<	424	psi?	Ok											

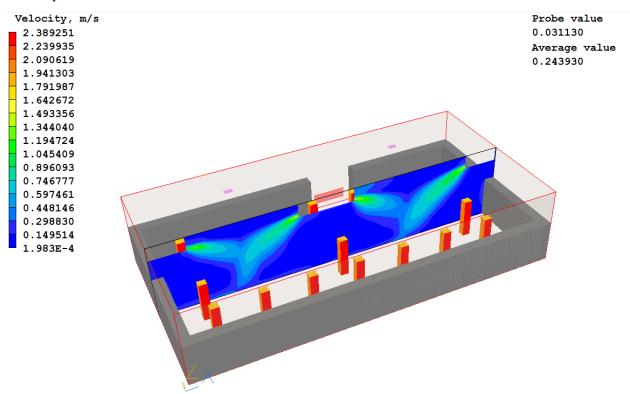
etermi	ne Factored	Moments, N	11 which va	ries	along length	e	=	0	AT EX	TERIOR SP	ΔN		Reinford	ement E	Bars Ar	ea & D	Diamete	ers
							=	3.75	in. A	INTERIOR	SPAN		Bar Size		iamete		Are	
						M ₁	=	197.66	k-ft				#3	0.375	5	in.	0.11	in
econda	ry Post-Tens	sioning Mom	ents, M.	Var	Linearly Betw	een :	Sur	ports					#4	0.5		in.	0.20	in
	•			T.			Πİ	•					#5	0.625	5	in.	0.31	in
	M _{sec} = M _{ba}	- M ₁	M _{sec}	=	150.22	k-ft		L	=	28	ft		#6	0.75		in.	0.44	
	340 00			=	150.22	k-ft		L	=	28	ft		#7	0.875	5	in.	0.60	in
				=	150.22	k-ft		L	=	28	ft		#8	1		in.	0.79	in
				=	150.22			L	=	28	ft		#9	1.125	5	in.	0.99	
													#10	1.25		in.	1.23	in
Jitimate	Strength M	loments (Mu	= 1.2MDL +	1.6	MLL+1.0Msec)								#11	1.375	5	in.	1.48	in
													#12	1.5		in.	1.77	in
	At Midspa	ın:	Mu	=	303.17	k-ft		L	=	28	ft							
				=	303.17				=	28								
				=	303.17 303.17				=	28 28								
				-	303.17	K-IL			-	20	IL							
	At Suppor	ts:	Mu	=	-461.60	k-ft		L	=	28	ft							
				=	-461.60	k-ft		L	=	28	ft							
				=	-461.60				=	28								
				=	-461.60	k-ft		L	=	28	ft							
otermi	ne Minimun	n Bonded Rei	inforcemen															
, ctciiiii	iic iviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	II DONGCU NCI	moreemer															
	Positive M	loment Regio	n:															
		Interior Spar	n f _{t,max}	=	-134.78	psi	<	141.4	psi	No Pos	ive Re	inforcement	t Needed	(ACI 18	.9.3.1)			
		Exterior Spa	n f _{c,max}	=	-17.17	psi	<	141.4	psi	No Pos	ive Re	inforcement	t Needed	(ACI 18	.9.3.1)			
	Negative I	Moment Regi				,												
		Interior Supp	p A _{s,min}	=	2.52	in												
		Trial Dainfan																
		Trial Reinfor	cement Siz	e:														
		Bar Size:	6															
		Bar Size: A/bar:	6 0.44	in ²														
		Bar Size: A/bar: Quantity:	6 0.44 6	in²						2.50	in ²	Ol.						
		Bar Size: A/bar:	6 0.44	in²	>	A _{req}	uire	d	=	2.52	in ²	Ok						
		Bar Size: A/bar: Quantity: A:	6 0.44 6 2.64	in²			quire	d	=	2.52	in ²	Ok						
		Bar Size: A/bar: Quantity:	6 0.44 6 2.64	in²	> 2.52		quire	d	=	2.52	in ²	Ok						
		Bar Size: A/bar: Quantity: A: Exterior Supp	6 0.44 6 2.64	in² in²			quire	d	=	2.52	in ²	Ok						
		Bar Size: A/bar: Quantity: A: Exterior Supp	6 0.44 6 2.64 0 A _{s,min}	in ²			quire	d	=	2.52	in ²	Ok						
		Bar Size: A/bar: Quantity: A: Exterior Supp	6 0.44 6 2.64 A _{s,min}	in ² in ² =			quire	d	=	2.52	in ²	Ok						
		Bar Size: A/bar: Quantity: A: Exterior Supp Bar Size: A/bar: Quantity:	6 0.44 6 2.64 0 A _{s,min} 6 0.44	in ² in ² =	2.52	in ²			=		in ²	Ok						
		Bar Size: A/bar: Quantity: A: Exterior Supp Bar Size: A/bar:	6 0.44 6 2.64 A _{s,min} 6 0.44	in ² in ² =	2.52													
		Bar Size: A/bar: Quantity: A: Exterior Supp Bar Size: A/bar: Quantity: A:	6 0.44 6 2.64 0 A _{s,min} 6 0.44	in ² in ² =	2.52	in ²												
	E Code Requi	Bar Size: A/bar: Quantity: A: Exterior Supp Bar Size: A/bar: Quantity: A: irements:	6 0.44 6 2.64 A _{s.min} 6 0.44 6 2.64	in ² in ² = in ²	2.52	in ²	quire	d	=	2.52								
	Code Requi	Bar Size: A/bar: Quantity: A: Exterior Supp Bar Size: A/bar: Quantity: A: Irements: Must span < Minimum of	6 0.44 6 2.64 0 0.44 6 0 0.44 6 0 0.44 6 0 0.44 6 0 0.44 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in ² in ² in ² in ² in ²	2.52 > 6 clear span or	Areq	ch s	d side (A	= CI 18.	2.52								
	Code Requi	Bar Size: A/bar: Quantity: A: Exterior Supp Bar Size: A/bar: Quantity: A: irements: Wust span < Winimum of Place top bar	6 0.44 6 2.64 2.64 6 2.64 6 2.64 6 2.64 6 2.64 6 2.64 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	in ² = in ² in ² sf 1/	2.52	Areq	ch s	d side (A	= CI 18.	2.52	in ²							
	Code Requi	Bar Size: A/bar: Quantity: A: Exterior Supp Bar Size: A/bar: Quantity: A: Grements: Must span < I Winimum of Place top bar =	6 0.44 6 2.64 As,min 6 0.44 6 2.64 minimum c 4 bars in ers within 1.	in ² in ² = in ² in ² in ² sf 1/ ach 5h c	2.52 > 6 clear span or direction (ACI :	A _{req}	ch s	d side (A	= CI 18.	2.52	in ²							
	Code Requi	Bar Size: A/bar: Quantity: A: Exterior Supp Bar Size: A/bar: Quantity: A: Grements: Must span < I Winimum of Place top bar =	6 0.44 6 2.64 As,min 6 0.44 6 2.64 minimum c 4 bars in ers within 1.	in ² in ² = in ² in ² in ² sf 1/ ach 5h c	2.52 > 6 clear span or	A _{req}	ch s	d side (A	= CI 18.	2.52	in ²							
eck Mini	Code Requi	Bar Size: A/bar: Quantity: A: Exterior Supp Bar Size: A/bar: Quantity: A: Grements: Must span < I Winimum of Place top bar =	6 0.44 6 2.64 A _{s,min} 6 0.44 6 2.64 minimum c 4 bars in ers within 1. 15 r Spacing =	in ² = in ²	2.52 > 6 clear span or direction (ACI : f support face ' (ACI 18.9.3.3)	A _{req}	ch s	d side (A	= CI 18.	2.52	in ²							
eck Min	Code Requi	Bar Size: A/bar: Quantity: A: Exterior Supp Bar Size: A/bar: Quantity: A: Irements: Must span < If the span is a spa	6 0.44 6 2.64 A _{s,min} 6 0.44 6 2.64 minimum c 4 bars in ers within 1. 15 r Spacing =	in ² = in ²	2.52 > 6 clear span or direction (ACI : f support face ' (ACI 18.9.3.3)	A _{req}	ch s	d side (A	= CI 18.	2.52	in ²							
eck Min	Code Requi	Bar Size: A/bar: Quantity: A: Exterior Supp Bar Size: A/bar: Quantity: A: Irements: Must span < If the span is a spa	6 0.44 6 2.64 D As,min 6 0.44 6 2.64 minimum c 4 bars in ers within 1. 15 r Spacing =	in ² = in ²	2.52 > 6 clear span or direction (ACI : f support face ' (ACI 18.9.3.3)	A _{req}	ch s	d side (A	= CI 18.	2.52	in ²							
eck Min	Code Requi	Bar Size: A/bar: Quantity: A: Exterior Supp Bar Size: A/bar: Quantity: A: Irements: Must span < I Minimum of Place top bar = Maximum Ba Orcement fo	6 0.44 6 2.64 D As,min 6 0.44 6 2.64 minimum c 4 bars in ers within 1. 15 r Spacing = r Ultimate	in ² = in ²	2.52 > 6 clear span or direction (ACI : f support face ' (ACI 18.9.3.3)	Areq	ch s	d side (A	= CI 18.	2.52	ı in² Ok							
eck Min	Code Requi	Bar Size: A/bar: Quantity: A: Exterior Supp Bar Size: A/bar: Quantity: A: Irements: Must span < I Minimum of Place top bar = Maximum Ba Forcement for	6 0.44 6 2.64 D As,min 6 0.44 6 2.64 minimum c 4 bars in ers within 1. 15 r Spacing = r Ultimate	in ² = in ² in ² in ² sof 1/ ach 5h c in 12' Stree	2.52 > 6 clear span or direction (ACI : f support face ' (ACI 18.9.3.3) ingth:	Areq	ch s	d side (A 3) 8.9.3.3)	= CI 18.	2.52	ı in² Ok							
	Code Requi	Bar Size: A/bar: Quantity: A: Exterior Supp Bar Size: A/bar: Quantity: A: Irements: Must span < Minimum of Place top bar	6 0.44 6 2.64 2.64 2.64 6 2.64 6 2.64 6 2.64 6 2.64 6 7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	in ² = in ² in ² in ² sof 1/ ach 5h c in 12' Stree	2.52 > 6 clear span or direction (ACI : f support face ' (ACI 18.9.3.3) ingth:	Areq	ch s	d side (A 3) 8.9.3.3)	= CI 18.	2.52	ı in² Ok							
eck Min	Code Requi	Bar Size: A/bar: Quantity: A: Exterior Supp Bar Size: A/bar: Quantity: A: Wust span < I Winimum of Place top bar = Maximum Ba orcement fo = 3.978 = 33.60	6 0.44 6 2.64 2.64 6 0.44 6 0.44 6 0.44 6 0.44 6 0.64 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in ² = in ² in ² in ² sof 1/ ach 5h c in 12' Stree	2.52 > 6 clear span or direction (ACI : f support face ' (ACI 18.9.3.3) ingth:	Areq	ch s	d side (A 3) 8.9.3.3)	= CI 18.	2.52	ı in² Ok							
	Code Requi	Bar Size: A/bar: Quantity: A: Exterior Supp Bar Size: A/bar: Quantity: A: Irements: Must span < Minimum of Place top bar	6 0.44 6 2.64 As,min 6 0.44 6 2.64 As,min 1.15 r Spacing = r Ultimate in 2 ft	in ² = in ² in ² in ² sof 1/ ach 5h c in 12' Stree	2.52 > 6 clear span or direction (ACI : f support face ' (ACI 18.9.3.3) ingth:	Areq	ch s	d side (A 3) 8.9.3.3)	= CI 18.	2.52	ı in² Ok							

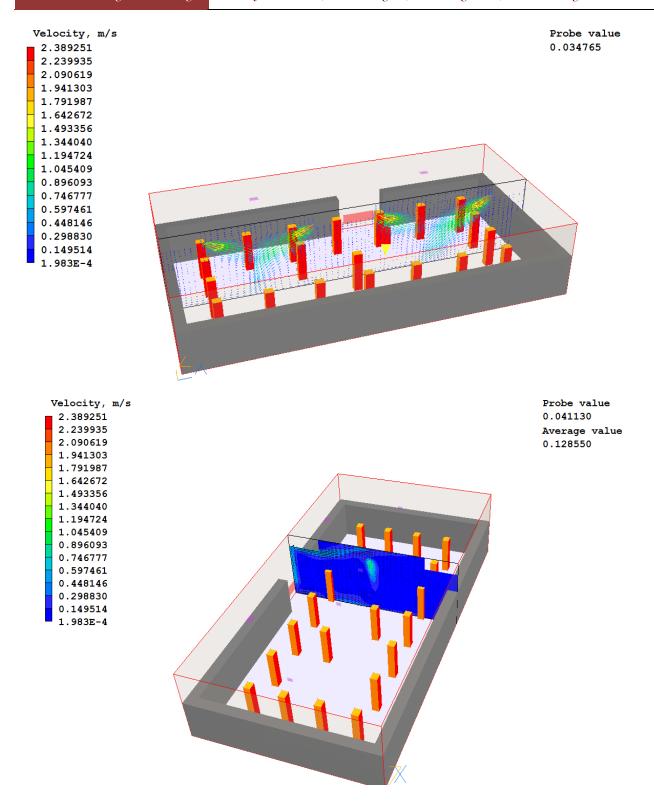
BIM THESIS PROPOSAL

HPR Integrated Design

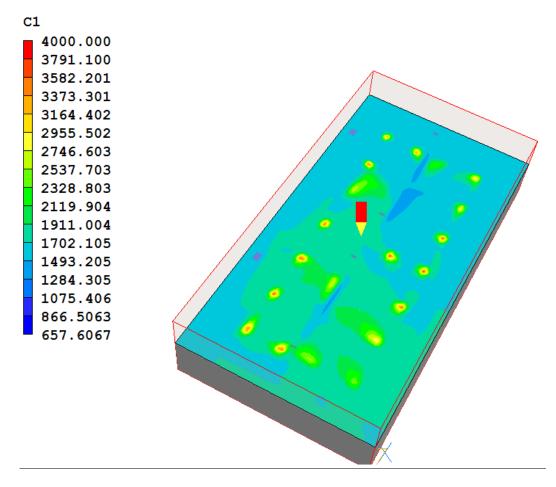
 ${\bf Jeremy\ Heilman\ |\ Josh\ Progar\ |\ Nico\ Pugilese\ |\ James\ Rodgers}$

DEFLECTIO) NC	CALCULAT	IONS:																	
Live Load	=	100	psf																	
l _s	=	1000	in ³			(12" Strip o	of Slab)													
E _c	=	4030509	psi																	
K	=	1.18		L	=	28.00	ft	ας	=	0.042	α_{L}	=	0.042	L	=	26.5	ft	Ls	=	22.292 ft
	=	0.95		L	=	28.00	ft	α_{s}	=	0.045	α_{L}	=	0.039	L	=	26.5	ft	Ls	=	28.125 ft
	=	0.75		L	=	28.00	ft	α_{s}	=	0.051	α_{L}	=	0.025	L	=	26.5	ft	Ls	=	35.67 ft
	=	0.80		L	=	28.00	ft	α_{s}	=	0.050	α_{L}	=	0.028	L	=	26.5	ft	Ls	=	33.5 ft
	=	0.88		L	=	28.00	ft	α_{s}	=	0.044	α_{L}	=	0.035	L	=	26.5	ft	Ls	=	30.5 ft
	=	0.98		L	=	28.67	ft	αs	=	0.042	α_{L}	=	0.041	L	=	27.17	ft	Ls	=	27.17 ft
								*V	alue	s from Figure	9-10: Pr	rest	ressed Conc	rete: A	Fun	damental	5th F	dition.	Nav	WV.


Live Lo	ad Moi	ments:						Live Load D	eflections:						
Ms	=	25045	in-lb/ft	L	=	28.00	ft		Δ_{LI}	=	0.073	Δ_{allow}	=	0.933	Ok
M _L	=	35393	in-lb/ft						Δ _{LI}	=	0.103	Δ _{allow}	=	0.933	Ok
Ms	=	42715	in-lb/ft	L	=	28.00	ft		Δι	=	0.125	Δ_{allow}	=	0.933	Ok
M _L	=	32865	in-lb/ft						Δ _{LI}	=	0.096	Δ_{allow}	=	0.933	Ok
Ms	=	77868	in-lb/ft	L	=	28.00	ft		Δ	=	0.227	Δ _{allow}	=	0.933	Ok
M _L	=	21068	in-lb/ft						Δ _{LI}	=	0.061	Δ_{allow}	=	0.933	Ok
Ms	=	67335	in-lb/ft	L	=	28.00	ft		Δμ	=	0.196	Δ _{allow}	=	0.933	Ok
M _L	=	23596	in-lb/ft						Δμ	=	0.069	Δ_{allow}	=	0.933	Ok
Ms	=	49117	in-lb/ft	L	=	28.00	ft		Δμ	=	0.143	Δ _{allow}	=	0.933	Ok
M _L	=	29495	in-lb/ft						Δμ	=	0.086	Δ_{allow}	=	0.933	Ok
Ms	=	37206	in-lb/ft	L	=	28.67	ft		Δ	=	0.114	Δ_{allow}	=	0.956	Ok
M _L	=	36320	in-lb/ft						Διι	=	0.111	Δ_{allow}	=	0.956	Ok
Wide E	Beam S	hear Che	ck:												
Wu	=	328	psf												
Short E	Direction	n													
Vu	=	2601	lb/ft												
ΦV _c	=	10182	lb/ft			Ok									
Long D	irection	n (Worst (Case)												
Vu	=	3061	lb/ft												
ΦVc	=	10182	lb/ft			Ok									

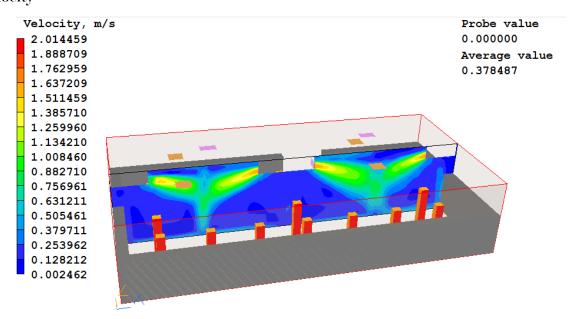

CFD Results

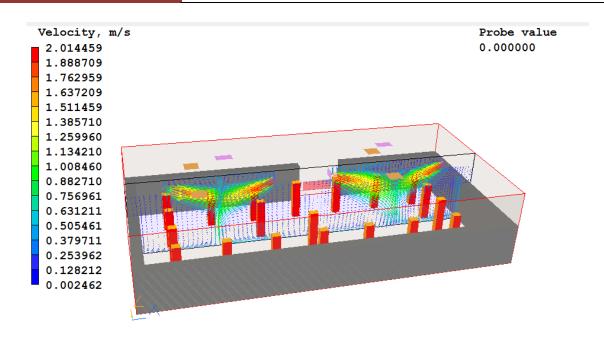
Code


Numerical		Turbulence	Computational time (24
Scheme	Grid Size	model	GB RAM)
Hybrid	81,46,31	K-E	2:53

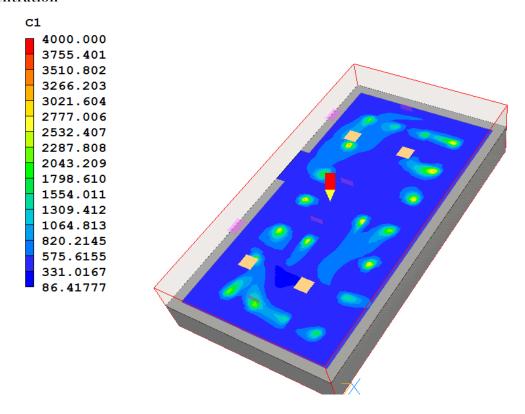
Velocity

Concentration:


The average room concentration was 1683.4 ppm. This was calculated by taking 20 plane averages, nine in the Y-direction and 11 in the X-direction and averaging them together.


Calculated Ventilation

Residual Calculation							
	P1 Res Sum	4.98E-03					
Mass	R1 Pos Sum	4.39E-01					
	Residual	1%					
	Tem1 Res Sum	5.75E+01					
Temperature	Tem1 Pos Sum	1.29E+05					
	Residual	0.04%					
	C1 Res Sum	4.12E+01					
Concentration	C1 Pos Sum	7.60E+02					
	Residual	5%					


Numerical		Turbulence	Computational time
Scheme	Grid Size	model	(24 GB RAM)
Hybrid	85,39,37	K-E	3:03

Velocity

Concentration

The average room concentration was 503.09 ppm. This was calculated by taking 20 plane averages, nine in the Y-direction and 11 in the X-direction and averaging them together.

R	esidual Calculation	
	P1 Res Sum	2.11E-02
Mass	R1 Pos Sum	1.961443
	Residual	1.1%
	Tem1 Res Sum	1.59E+02
Temperature	Tem1 Pos Sum	5.77E+05
	Residual	0.03%
	C1 Res Sum	1.11E+02
Concentration	C1 Pos Sum	1.03E+03
	Residual	10.7%

Ventilation Rate and Load comparison for the Men's Locker Room

Event Level Raising Cost Impact

Table 39: Event Level Raising Overall Cost Breakdown

		Baseline	ine			Redesign	sign			害	Difference (+/-)		
Item - Cost	Material Cost	Labor/Equip	0&P	Total Cost	Material Cost	Labor/Equip	0&P	Total Cost	Material	Labor/Equip	0&P	Total (%)	(9)
Excavation/Backfill	\$105,668.16	\$787,599.26	\$221,530.32 \$1,114,797.74	\$1,114,797.74	\$55,224.00	\$587,299.27	\$159,345.77	\$801,869.04	\$50,444.16	\$200,299.99	\$62,184.55	\$312,928.70	28.07%
Foundation Walls	\$256,157.73	\$631,332.51	\$220,097.58 \$1,107,587.82	\$1,107,587.82	\$218,614.13	\$538,784.60	\$187,834.89	\$945,233.62	\$37,543.60	\$92,547.91	\$32,262.69	\$162,354.20	14.66%
Evt Level Int Walls	\$258,577.16	\$354,392.30	\$152,016.43	\$764,985.89	\$219,989.17	\$294,671.71	\$127,635.90	\$642,296.78	\$38,587.99	\$59,720.59	\$24,380.53	\$122,689.11	16.04%
Concrete Columns	\$26,390.66	\$100,879.10	\$31,562.90	\$158,832.66	\$22,227.34	\$81,531.06	\$25,732.08	\$129,490.48	\$4,163.32	\$19,348.04	\$5,830.82	\$29,342.18	18.47%
Main Arena Bowl Stadia	\$72,175.16	\$18,764.16	\$22,552.95	\$113,492.27	\$83,470.28	\$27,755.32	\$27,583.95	\$138,809.55	-\$11,295.12	-\$8,991.16	-\$5,031.00	-\$25,317.28	-22.31%
Main Arena Bowl Seating	\$16,757.71	\$1,910.19	\$4,629.64	\$23,297.54	\$27,785.87	\$4,182.70	\$7,928.21	\$39,896.78	-\$11,028.16	-\$2,272.51	-\$3,298.57	-\$16,599.24	-71.25%
Main Arena Bowl Steps	\$6,843.69	\$6,143.63	\$3,220.86	\$16,208.18	\$4,524.55	\$4,061.72	\$2,129.39	\$10,715.66	\$2,319.14	\$2,081.91	\$1,091.46	\$5,492.51	33.89%
Main Concourse Int Walls	\$127,270.20	\$134,588.62	\$64,940.99	\$326,799.81	\$164,774.13	\$161,008.68	\$80,794.14	\$406,576.95	-\$37,508.93	-\$26,420.06	-\$15,853.15	\$177,114	-24.41%
Club Level Int Walls	\$35,304.61	\$71,614.31	\$26,515.89	\$133,434.81	\$39,790.35	\$82,974.77	\$30,445.75	\$153,210.87	-\$4,485.74	-\$11,360.46	-\$3,929.86	-\$19,776.06	-14.82%
Exterior Glazing w/ Mullions (not													
including East Façade)	\$65,769.31	\$10,276.56	\$18,859.38	\$94,905.25	\$81,582.24	\$12,743.59	\$23,392.81	\$117,718.64	-\$15,812.93	-\$2,467.03	-\$4,533.43	-\$22,813.39	-24.04%
Shaft & Column Walls	\$31,082.55	\$40,558.12	\$17,766.89	\$89,407.56	\$29,754.19	\$37,335.66	\$16,638.28	\$83,728.13	\$1,328.36	\$3,222.46	\$1,128.60	\$5,679.42	6.35%
Exterior Walls (not Including East													
Façade)	\$475,102.63	\$531,049.55	\$249,525.74 \$1,255,677.92	\$1,255,677.92	\$530,146.89	\$586,559.93	\$276,943.29	\$276,943.29 \$1,393,650.11	-\$55,044.26	-\$55,510.38	-\$27,417.55	\$137,972.19	-10.99%
Steel Columns	\$365,211.00	\$131,900.20	\$123,283.58	\$620,394.78	\$388,387.44	\$131,311.27	\$128,885.28	\$648,583.99	-\$23,176.44	\$588.93	-\$5,601.70	-\$28,189.21	4.54%
Shaft & Lobby Stairs	\$108,363.68	\$13,516.19	\$28,986.21	\$145,866.08	\$98,988.33	\$12,891.59	\$27,746.22	\$139,626.14	\$4,375.35	\$624.60	\$1,239.99	\$6,239.94	4.28%
Steel Beams & Concrete Footings	\$591,835.66	\$213,722.56	\$199,778.44 \$1,005,336.66	\$1,005,336.66	\$619,143.70	\$210,264.09	\$205,693.13	\$205,693.13 \$1,035,100.92	-\$27,308.04	\$3,458.47	-\$5,914.69	-\$29,764.26	-2.96%
Remaining Steel	\$1,713,342.96	\$574,665.90	\$567,426.20 \$2,855,435.06	\$2,855,435.06	\$1,713,342.96	\$537,895.65	\$558,307.18	\$558,307.18 \$2,809,545.79	\$0.00	\$36,770.25	\$9,119.02	\$45,889.27	1.61%
Total	\$4,250,852.87	852.87 \$3,622,913.16 \$1,952,693.98 \$9,826,460.01	\$1,952,693.98	59,826,460.01	\$4,297,745.57	\$4,297,745.57 \$3,311,271.61 \$1,887,036.26 \$9,496,053.44	\$1,887,036.26	59,496,053.44	-\$46,892.70	-\$46,892.70 \$311,641.55	\$65,657.71	\$65,657.71 \$330,406.56	3.36%

Table 40: Event Level Current Design Excavation Costs

Overhead & Profit Markup = 24.8%

				Material Cost	Equip/Labor	Total Material	Total Equip/		
Drilling and Blasting of Bedrock	Size/Amt	Unit/Hr	Unit	per Unit	per Unit	Cost	Labor Cost	O&P	Total Cost
Rock Excavation (drilling) Most work	10596	25	LF	\$0.00	\$8.51	\$0.00	\$90,171.96	\$22,362.65	\$112,534.61
Blasting 12' x 12' pattern	25401	108	CY	\$4.16	\$2.87	\$105,668.16	\$72,900.87	\$44,285.12	\$222,854.15
243 HP Excavator w/ 3 CY bucket ave cond (rock)	25401	181	CY	\$0.00	\$0.88	\$0.00	\$22,352.88	\$5,543.51	\$27,896.39
25 CY Dump Truck Hauling 3 miles at 30 mph (rock)	41912	79	CY	\$0.00	\$3.24	\$0.00	\$135,794.88	\$33,677.13	\$169,472.01
243 HP Excavator w/ 3 CY Bucket Ave Cond. (soil)	73207	278	CY	\$0.00	\$0.57	\$0.00	\$41,727.99	\$10,348.54	\$52,076.53
25 CY Dump Truck Hauling 3 miles at 30 mph (soil)	90703	79	CY	\$0.00	\$3.24	\$0.00	\$293,877.72	\$72,881.67	\$366,759.39
Front Loader (3 1/4 CY bucket)	91509	125	CY	\$0.00	\$1.42	\$0.00	\$129,942.78	\$32,225.81	\$162,168.59
12-ton 3-wheel Compactor for Backfill	806	100	CY	\$0.00	\$1.03	\$0.00	\$830.18	\$205.88	\$1,036.06
					Total	\$105,668.16	\$787,599.26		\$1,114,797.74

Table 41: Event Level Raising Excavation Costs

Overhead & Profit Markup = 24.8%

				Material Cost	Equip/Labor	Total Material	Total Equip/		
Drilling and Blasting of Bedrock	Size/Amt	Unit/Hr	Unit	per Unit	per Unit	Cost	Labor Cost	O&P	Total Cost
Rock Excavation (drilling) Most work	4584	25	LF	\$0.00	\$8.51	\$0.00	\$39,009.84	\$9,674.44	\$48,684.28
Blasting 12' x 12' pattern	13275	108	CY	\$4.16	\$2.87	\$55,224.00	\$38,099.25	\$23,144.17	\$116,467.42
243 HP Excavator w/ 3 CY bucket ave cond (rock)	13275	181	CY	\$0.00	\$0.88	\$0.00	\$11,682.00	\$2,897.14	\$14,579.14
25 CY Dump Truck Hauling 3 miles at 30 mph (rock)	21904	79	CY	\$0.00	\$3.24	\$0.00	\$70,968.96	\$17,600.30	\$88,569.26
243 HP Excavator w/ 3 CY Bucket Ave Cond. (soil)	67061	278	CY	\$0.00	\$0.57	\$0.00	\$38,224.77	\$9,479.74	\$47,704.51
25 CY Dump Truck Hauling 3 miles at 30 mph (soil)	83230	79	CY	\$0.00	\$3.24	\$0.00	\$269,665.20	\$66,876.97	\$336,542.17
Front Loader (3 1/4 CY bucket)	83827	125	CY	\$0.00	\$1.42	\$0.00	\$119,034.34	\$29,520.52	\$148,554.86
12-ton 3-wheel Compactor for Backfill	597	100	CY	\$0.00	\$1.03	\$0.00	\$614.91	\$152.50	\$767.41
					Total	\$55,224.00	\$587,299.27	\$159,345.77	\$801,869.04

Table 42: Event Level Current Design Steel Columns

Equipment costs based on same crane used by Current Project Team - 200 Ton Hydraulic Crane

				Material Cost	Equip/Labor	Total Material	Total Equip/		
Steel Columns	Size	Unit/Hr	Unit	per Unit	per Unit	Cost	Labor Cost	O&P	Total Cost
W24x176	45	5/8	Ton	\$1,724.31	\$607.75	\$77,593.95	\$27,348.53	\$26,025.74	\$130,968.22
W14x61	19	5/11	Ton	\$2,045.61	\$835.72	\$38,866.59	\$15,878.77	\$13,576.85	\$68,322.20
W14x74	8	25/47	Ton	\$1,884.96	\$714.68	\$15,079.68	\$5,717.45	\$5,157.69	\$25,954.82
W18x119	34	5/8	Ton	\$1,724.31	\$607.75	\$58,626.54	\$20,663.33	\$19,663.89	\$98,953.76
W12x136	2	5/8	Ton	\$1,724.31	\$607.75	\$3,448.62	\$1,215.49	\$1,156.70	\$5,820.81
W14x120	7	5/8	Ton	\$1,724.31	\$607.75	\$12,070.17	\$4,254.22	\$4,048.45	\$20,372.83
W14x145	13	5/8	Ton	\$1,724.31	\$607.75	\$22,416.03	\$7,900.69	\$7,518.55	\$37,835.26
W14x53	1	5/11	Ton	\$2,045.61	\$835.72	\$2,045.61	\$835.72	\$714.57	\$3,595.91
W14x68	2	25/47	Ton	\$1,884.96	\$714.68	\$3,769.92	\$1,429.36	\$1,289.42	\$6,488.70
W14x90	47	25/47	Ton	\$1,884.96	\$714.68	\$88,593.12	\$33,590.02	\$30,301.42	\$152,484.56
W24x146	13	5/8	Ton	\$1,724.31	\$607.75	\$22,416.03	\$7,900.69	\$7,518.55	\$37,835.26
HSS8x8x1/2	6	5/8	Ton	\$2,559.69	\$607.75	\$15,358.14	\$3,646.47	\$4,713.14	\$23,717.75
HSS6x6x3/8	1	1/2	Ton	\$2,463.30	\$759.73	\$2,463.30	\$759.73	\$799.31	\$4,022.34
HSS4x4x3/8	1	1/2	Ton	\$2,463.30	\$759.73	\$2,463.30	\$759.73	\$799.31	\$4,022.34
					Total	\$365,211.00	\$131,900.20	\$123,283.58	\$620,394.78

Table 43: Event Level Redesign Steel Columns

Equipment costs based on HPR's crane analysis (see Table 68 and 69 in Appendix G)

150 Ton Hydraulic Crane

Overhead & Profit Markup = 24.8%

				Material Cost	Equip/Labor	Total Material	Total Equip/		
Steel Columns	Size	Unit/Hr	Unit	per Unit	per Unit	Cost	Labor Cost	O&P	Total Cost
W24x176	46	5/8	Ton	\$1,724.31	\$566.89	\$79,318.26	\$26,077.11	\$26,138.05	\$131,533.43
W14x61	18	5/11	Ton	\$2,045.61	\$779.55	\$36,820.98	\$14,031.97	\$12,611.53	\$63,464.48
W14x74	10	25/47	Ton	\$1,884.96	\$666.37	\$18,849.60	\$6,663.67	\$6,327.29	\$31,840.56
W18x119	33	5/8	Ton	\$1,724.31	\$566.89	\$56,902.23	\$18,707.49	\$18,751.21	\$94,360.94
W12x136	2	5/8	Ton	\$1,724.31	\$566.89	\$3,448.62	\$1,133.79	\$1,136.44	\$5,718.84
W14x120	6	5/8	Ton	\$1,724.31	\$566.89	\$10,345.86	\$3,401.36	\$3,409.31	\$17,156.53
W14x145	12	5/8	Ton	\$1,724.31	\$566.89	\$20,691.72	\$6,802.73	\$6,818.62	\$34,313.07
W14x53	8	5/11	Ton	\$2,045.61	\$779.55	\$16,364.88	\$6,236.43	\$5,605.13	\$28,206.44
W14x68	2	25/47	Ton	\$1,884.96	\$666.37	\$3,769.92	\$1,332.73	\$1,265.46	\$6,368.11
W14x90	48	25/47	Ton	\$1,884.96	\$666.37	\$90,478.08	\$31,985.60	\$30,370.99	\$152,834.67
W14x99	2	25/47	Ton	\$1,884.96	\$666.37	\$3,769.92	\$1,332.73	\$1,265.46	\$6,368.11
W24x146	13	5/8	Ton	\$1,724.31	\$566.89	\$22,416.03	\$7,369.62	\$7,386.84	\$37,172.49
HSS8x8x1/2	6	5/8	Ton	\$2,559.69	\$566.89	\$15,358.14	\$3,401.36	\$4,652.36	\$23,411.86
HSS6x6x3/8	2	1/2	Ton	\$2,463.30	\$708.67	\$4,926.60	\$1,417.33	\$1,573.30	\$7,917.23
HSS4x4x3/8	2	1/2	Ton	\$2,463.30	\$708.67	\$4,926.60	\$1,417.33	\$1,573.30	\$7,917.23
		_			Total	\$388,387.44	\$131,311.27	\$128,885.28	\$648,583.99

Table 44: Event Level Current Design Steel Beams

Equipment costs based on same crane used by Current Project Team - 200 Ton Hydraulic Crane

				Material Cost	Equip/Labor	Total Material	Total Equip/		
Steel & Concrete	Size	Unit/Hr	Unit	per Unit	per Unit	Cost	Labor Cost	O&P	Total Cost
W30x108	8	5/8	Ton	\$1,724.31	\$607.75	\$13,794.48	\$4,861.96	\$4,626.80	\$23,283.24
W10x22	1	5/14	Ton	\$3,105.90	\$1,065.51	\$3,105.90	\$1,065.51	\$1,034.51	\$5,205.92
W10x33	6	5/11	Ton	\$2,045.61	\$835.72	\$12,273.66	\$5,014.35	\$4,287.43	\$21,575.43
W12x19	1	5/14	Ton	\$3,105.90	\$1,065.51	\$3,105.90	\$1,065.51	\$1,034.51	\$5,205.92
W12x30	2	5/11	Ton	\$2,045.61	\$835.72	\$4,091.22	\$1,671.45	\$1,429.14	\$7,191.81
W12x53	8	5/11	Ton	\$2,045.61	\$835.72	\$16,364.88	\$6,685.80	\$5,716.57	\$28,767.24
W16x40	3	5/11	Ton	\$2,045.61	\$835.72	\$6,136.83	\$2,507.17	\$2,143.71	\$10,787.72
W16x45	1	5/11	Ton	\$2,045.61	\$835.72	\$2,045.61	\$835.72	\$714.57	\$3,595.91
W16x67	1	25/47	Ton	\$1,884.96	\$715.68	\$1,884.96	\$715.68	\$644.96	\$3,245.60
W18x35	72	5/11	Ton	\$2,045.61	\$835.72	\$147,283.92	\$60,172.17	\$51,449.11	\$258,905.20
W30x148	43	5/8	Ton	\$1,724.31	\$607.75	\$74,145.33	\$26,133.04	\$24,869.04	\$125,147.41
W30x173	129	5/8	Ton	\$1,724.31	\$607.75	\$222,435.99	\$78,399.12	\$74,607.11	\$375,442.22
2L6x6x3/4x3/4	5	64/91	Ton	\$2,848.86	\$540.69	\$14,244.30	\$2,703.43	\$4,203.04	\$21,150.77
HSS8x8x1/2	9	5/8	Ton	\$2,559.69	\$607.75	\$23,037.21	\$5,469.71	\$7,069.72	\$35,576.63
HSS10x10x1/2	2	5/6	Ton	\$2,559.69	\$456.23	\$5,119.38	\$912.47	\$1,495.90	\$7,527.74
HSS8x8x5/8	16	5/8	Ton	\$2,559.69	\$607.75	\$40,955.04	\$9,723.92	\$12,568.38	\$63,247.34
					Total	\$590,024.61	\$207,937.01	\$197,894.48	\$995,856.10

Table 45: Event Level Redesign Steel Beams

Equipment costs based on HPR's crane analysis (see Tables 68 and 69 in Appendix G)

150 Ton Hydraulic Crane

Overhead & Profit Markup = 24.8%

				Material Cost	Equip/Labor	Total Material	Total Equip/		
Steel & Concrete	Size	Unit/Hr	Unit	per Unit	per Unit	Cost	Labor Cost	O&P	Total Cost
W30x108	8	5/8	Ton	\$1,724.31	\$566.89	\$13,794.48	\$4,535.15	\$4,545.75	\$22,875.38
W10x22	5	5/14	Ton	\$3,105.90	\$993.63	\$15,529.50	\$4,968.14	\$5,083.42	\$25,581.06
W10x33	8	5/11	Ton	\$2,045.61	\$779.55	\$16,364.88	\$6,236.43	\$5,605.13	\$28,206.44
W16x31	3	5/11	Ton	\$2,045.61	\$779.55	\$6,136.83	\$2,338.66	\$2,101.92	\$10,577.41
W16x40	3	5/11	Ton	\$2,045.61	\$779.55	\$6,136.83	\$2,338.66	\$2,101.92	\$10,577.41
W16x45	1	5/11	Ton	\$2,045.61	\$779.55	\$2,045.61	\$779.55	\$700.64	\$3,525.80
W24x94	5	25/47	Ton	\$1,884.96	\$667.37	\$9,424.80	\$3,336.83	\$3,164.89	\$15,926.52
W18x35	72	5/11	Ton	\$2,045.61	\$779.55	\$147,283.92	\$56,127.88	\$50,446.13	\$253,857.93
W30x148	43	5/8	Ton	\$1,724.31	\$566.89	\$74,145.33	\$24,376.43	\$24,433.40	\$122,955.16
W30x173	129	5/8	Ton	\$1,724.31	\$566.89	\$222,435.99	\$73,129.30	\$73,300.19	\$368,865.48
2L6x6x3/4x3/4	5	64/91	Ton	\$2,848.86	\$504.28	\$14,244.30	\$2,521.38	\$4,157.89	\$20,923.57
HSS8x8x1/2	9	5/8	Ton	\$2,559.69	\$566.89	\$23,037.21	\$5,102.04	\$6,978.54	\$35,117.79
HSS10x10x1/2	2	5/6	Ton	\$2,559.69	\$425.52	\$5,119.38	\$851.03	\$1,480.66	\$7,451.08
HSS8x8x5/8	16	5/8	Ton	\$2,559.69	\$566.89	\$40,955.04	\$9,070.30	\$12,406.28	\$62,431.63
W8x31	7	5/11	Ton	\$2,045.61	\$779.55	\$14,319.27	\$5,456.88	\$4,904.48	\$24,680.63
W16x57	3	5/11	Ton	\$2,045.61	\$779.55	\$6,136.83	\$2,338.66	\$2,101.92	\$10,577.41
					Total	\$617,110.20	\$203,507.35	\$203,513.15	\$1,024,130.70

Table 46: Event Level Current Design of "To be Modified" Precast Stadia Dimensions

Dimensions based on 12' Sections of Precast Stadia

	Area (L x Rise)	Thick	PSF	Wt	Tons	Ton/Section
General Public - Riser 14	18	0.5	78	34723 1/8	17 1/3	1
General Public - Riser Wall	44 1/2	0.75	118.5	56702 4/9	28 1/3	1
General Public -14 Riser NE	12	0.5	78	2856 3/4	13/7	1
General Public - 14 NE Wall	44 3/4	0.5	78	2184	1	1
Lower Student - Riser 9	57	1	159	20399 5/7	10 1/5	1

Table 47: Event Level Current Design of "To be Modified" Precast Stadia Cost

Equipment costs based on using a 10,000 lb telehandler with $55^{\circ}/42^{\circ}$ reach

			Material Cost	Equip/Labor	Total Material	Total Equip/		
Baseline Stadia	# 12' Sect	Unit/Hr	per Unit	per Unit	Cost	Labor Cost	O&P	Total Cost
Lower Gen Public Bowl - Riser 14	38	2.72	\$396.90	\$195.46	\$15,082.20	\$7,427.48	\$5,582.40	\$28,092.08
Lower Gen Public Bowl - Riser Wall	40	2.72	\$981.23	\$195.46	\$39,249.00	\$7,818.40	\$11,672.72	\$58,740.12
Lower Gen Public Bowl - Riser 14 NE	4	2.72	\$264.60	\$195.46	\$1,058.40	\$781.84	\$456.38	\$2,296.62
Lower Gen Public Bowl - 14 NE Wall	3	2.72	\$986.74	\$195.46	\$2,960.21	\$586.38	\$879.55	\$4,426.15
Lower Student Section - Riser 9	11	2.72	\$1,256.85	\$195.46	\$13,825.35	\$2,150.06	\$3,961.90	\$19,937.31
-				Total	\$72,175,16	\$18.764.16	\$22.552.95	\$113.492.27

Table 48: Event Level Redesign of "Modified" Precast Stadia Dimensions

Dimensions based on 12' Sections of Precast Stadia

	Area (L x Rise)	Thick	PSF	Wt	Tons	Ton/Section
Basic Riser	2 1/3					
General Public - Riser 14	28	0.5	78	30662 5/6	15 1/3	1
General Public - Riser 15	28 1/4	0.5	78	26080 2/3	13	1
General Public - Riser 16	28 1/2	0.5	78	26441 3/8	13 2/9	1
General Public - Riser 17	18	0.5	78	26872 1/7	13 3/7	1
Lower Student Riser 9 L&R	57	1	159	14712 1/4	7 1/3	1
Lower Student Riser 9 Mid	22	1	78	2790 2/3	1 2/5	1
Lower Student Riser 10	22	1	78	3634 4/5	1 4/5	1
Lower Student Riser 11	22	1	78	3691 3/4	15/6	1
Lower Student Riser 12	6	1	78	3753 3/4	17/8	1

Table 49: Event Level Redesign of "Modified" Precast Stadia Cost

Equipment costs based on using a 10,000 lb telehandler with 55'/42' reach

Overhead & Profit Markup = 24.8%

			Material Cost	Equip/Labor	Total Material	Total Equip/		
Redesign Stadia	Quantity	Unit/Hr	per Unit	per Unit	Cost	Labor Cost	O&P	Total Cost
Lower Gen Public Bowl - Riser 14	33	2.72	\$617.40	\$195.46	\$20,374.20	\$6,450.18	\$6,652.45	\$33,476.83
Lower Gen Public Bowl - Riser 15	28	2.72	\$622.91	\$195.46	\$17,441.55	\$5,472.88	\$5,682.78	\$28,597.21
Lower Gen Public Bowl - Riser 16	29	2.72	\$628.43	\$195.46	\$18,224.33	\$5,668.34	\$5,925.38	\$29,818.05
Lower Gen Public Bowl - Riser 17	29	2.72	\$396.90	\$195.46	\$11,510.10	\$5,668.34	\$4,260.25	\$21,438.69
Lower Student Section - Riser 9 L & R	8	2.72	\$1,256.85	\$195.46	\$10,054.80	\$1,563.68	\$2,881.38	\$14,499.86
Lower Student Section - Riser 9 Mid	3	2.72	\$485.10	\$195.46	\$1,455.30	\$586.38	\$506.34	\$2,548.02
Lower Student Section - Riser 10	4	2.72	\$485.10	\$195.46	\$1,940.40	\$781.84	\$675.12	\$3,397.36
Lower Student Section - Riser 11	4	2.72	\$485.10	\$195.46	\$1,940.40	\$781.84	\$675.12	\$3,397.36
Lower Student Section - Riser 12	4	2.72	\$132.30	\$195.46	\$529.20	\$781.84	\$325.14	\$1,636.18
				Total	\$83,470.28	\$27,755.32	\$27,583.95	\$138,809.54

Table 50: Event Level Current Design of "To be Modified" Arena Seating

Overhead & Profit Markup = 24.8%

				Material Cost	Equip/Labor	Total Material	Total Equip/		
Baseline Seating	Seats	Unit/Hr	Unit	per Unit	per Unit	Cost	Labor Cost	O&P	Total Cost
10" Student Bleacher Bench Per 18" Seat	23	22 2/9	Each	\$16.49	\$4.38	\$379.27	\$100.74	\$119.04	\$599.05
36" Loge Suite Seat - Economy	73	4 38/53	Each	\$196.88	\$20.65	\$14,372.24	\$1,507.45	\$3,938.16	\$19,817.85
19" Molded Plastic Chair - Wheel chair Companion	20	6 14/31	Each	\$100.31	\$15.10	\$2,006.20	\$302.00	\$572.43	\$2,880.63
					Total	\$16,757.71	\$1,910.19	\$4,629.64	\$23,297.54

Table 51: Event Level Redesign of "Modified" Arena Seating

				Material Cost	Equip/Labor	Total Material	Total Equip/		
Redesign Seating	Seats	Unit/Hr	Unit	per Unit	per Unit	Cost	Labor Cost	O&P	Total Cost
19" Molded Plastic Chair - Arena	277	6 14/31	Each	\$100.31	\$15.10	\$27,785.87	\$4,182.70	\$7,928.21	\$39,896.78
					Total	\$27,785.87	\$4,182.70	\$7,928.21	\$39,896.78

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

Table 52: Event Level Current Design Concrete Arena Steps

Overhead & Profit Markup = 24.8%

	Concrete	Concrete	Concrete	Synth Fibers	Syn Fibers	Formwork	Formwork	Total	Total		
Baseline Arena Steps	Vol (CY)	Material	Labor	(lbs)	Material	(SF)	Labor	Material	Labor	O&P	Total
Gen Pub - Lower Bowl Stairs	54.498	\$84.36	\$8.95	81.7	\$8.02	490.5	\$8.62	\$5,253.06	\$4,715.71	\$2,472.26	\$12,441.03
Gen Pub - NE Entry Lobby Stair	7.842	\$84.36	\$8.95	11.8	\$8.02	70.6	\$8.62	\$755.89	\$678.57	\$355.75	\$1,790.20
Student - Lower Bowl Stairs	8.66	\$84.36	\$8.95	13.0	\$8.02	77.9	\$8.62	\$834.74	\$749.35	\$392.85	\$1,976.94
							Total	\$6,843.69	\$6,143.63	\$3,220.86	\$16,208.18

Table 53: Event Level Redesign Concrete Arena Steps

Overhead & Profit Markup = 24.8%

	Concrete	Concrete	Concrete	Synth Fibers	Syn Fibers	Formwork	Formwork	Total	Total		
Redesign Arena Steps	Vol (CY)	Material	Labor	(lbs)	Material	(SF)	Labor	Material	Labor	O&P	Total
Gen Pub - Lower Bowl Stairs	32.307	\$84.36	\$8.95	48.5	\$8.02	290.8	\$8.62	\$3,114.07	\$2,795.52	\$1,465.58	\$7,375.18
Gen Pub - Upper Bowl Stairs	9.8	\$84.36	\$8.95	14.7	\$8.02	88.2	\$8.62	\$944.62	\$847.99	\$444.57	\$2,237.18
Student - Lower Bowl Stairs	4.833	\$84.36	\$8.95	7.2	\$8.02	43.5	\$8.62	\$465.85	\$418.20	\$219.24	\$1,103.30
							Total	\$4,524.55	\$4,061.72	\$2,129.39	\$10,715.66

Event Level Raising Schedule Impact

Table 54: Current Design Excavation Workdays

Overall Days (44,000 CY Rock) 356 Schedule Event Lvl Only (based on 35 days) 25

Drilling and Blasting of Bedrock	Size/Amt	Unit/Hr	Unit	Crew	Hours	Hrs/Shift	Daily Output	Shifts/Day	Days
Rock Excavation (drilling) Most work	10596	25	LF	S 1	424	8	200	2	26 1/2
Blasting 12' x 12' pattern	25401	108	CY	C1	236	5	540	1	47 1/5
243 HP Excavator w/ 3 CY bucket ave cond (rock)	25401	181	CY	OE	141	8	1448	2	8 13/16
25 CY Dump Truck Hauling 3 miles at 30 mph (rock)	41912	79	CY	TD	531	8	632	2	33 3/16
243 HP Excavator w/ 3 CY Bucket Ave Cond. (soil)	73207	278	CY	OE	264	8	2224	2	16 1/2
25 CY Dump Truck Hauling 3 miles at 30 mph (soil)	90703	79	CY	TD	1149	8	632	2	71 13/16
Front Loader (3 1/4 CY bucket)	91509	125	CY	S1	733	8	1000	2	45 13/16
12-ton 3-wheel Compactor for Backfill	806	100	CY	HX	8	8	800	2	1/2
Grading & Compacting w/ 300 HP Dozer	6702	167	CY	GK	41	8	1336	2	2 9/16
								Total	253

217

BIM THESIS PROPOSAL

HPR Integrated Design

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

Table 55: Event Level Raising Excavation Workdays

Overall Days (44,000 CY Rock) 356 Schedule Event Lvl Only (based on 35 days) 18

Drilling and Blasting of Bedrock - Everything	Size/Amt	Unit/Hr	Unit	Crew	Hours	Hours/Shift	Daily Output	Shifts/Day	Days
Rock Excavation (drilling) Most work	4584	25	LF	S1	184	8	200	2	11 1/2
Blasting 12' x 12' pattern	13275	108	CY	C1	123	5	540	1	24 3/5
243 HP Excavator w/ 3 CY bucket ave cond (rock)	13275	181	CY	OE	74	8	1448	2	4 5/8
25 CY Dump Truck Hauling 3 miles at 30 mph (rock)	21904	79	CY	TD	278	8	632	2	17 3/8
243 HP Excavator w/ 3 CY Bucket Ave Cond. (soil)	67061	278	CY	OE	242	8	2224	2	15 1/8
25 CY Dump Truck Hauling 3 miles at 30 mph (soil)	83230	79	CY	TD	1054	8	632	2	65 7/8
Front Loader (3 1/4 CY bucket)	83827	125	CY	S1	671	8	1000	2	41 15/16
12-ton 3-wheel Compactor for Backfill	597	100	CY	HX	8	8	800	2	1/2
Grading & Compacting w/ 300 HP Dozer	6702	167	CY	GK	41	8	1336	2	2 9/16
_								Total	185

APPENDIX G: Main Arena Roof System

Structural Loads

Snow Loads Flat Roof Snow Load and Drifting

Table 56: Flat Roof Snow Load Calculations

Flat Roof Snow Load Calculations							
Variable Value Code							
Ground Snow Load - pg (psf)	40.0	Adopted per State College Amendment A, Section 103					
Exposure Factor - C _e	1.0	ASCE 7-10 Table 7-2 - Fully Exposed					
Temperature Factor - C _t	1.1	ASCE 7-10 Table 7-3 - Struct. Kept Right Above Freezing					
Importance Factor - I	1.1	ASCE 7-10 Table 7-4 - Building Category III					
Flat Roof Snow Load - p _f (psf)							
	36.0	Used per FM Global Plan Review No. 122327 dated 4/13/11					

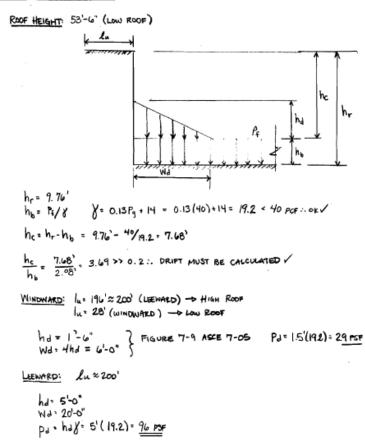


Table 57: Summary of Snow Drift Load Calculations

Snow Drift Load Calculations									
Do of Lovel		Wine	dward		Leeward				
Roof Level	L _u (ft)	h _d (ft)	p _d (psf)	w _d (ft)	L _u (ft)	h _d (ft)	p _d (psf)	w _d (ft)	
Low	28.00	1.50	29.00	6.00	28.00	5.00	96.00	20.00	

Wind Calculations

Table 58: General Wind Load Design Criteria

General Wind Load Design Criteria							
Design Wind Speed	120 mph	ASCE 7-10 (Fig. 26.5.1)					
Exposure Category	С	ASCE 7-10 (Fig. 26.7.3)					
Importance Factor (Iw)	1.15	ASCE 7-10 (Table 1.5-2)					
Topographic Factor (K _{zt})	1.00	ASCE 7-10 (26.8 & Table 2.8-1)					
Internal Pressure Coefficient (Gc _{pi})	±0.18	ASCE 7-10 - Enclosed					

Table 59: Velocity Pressure Coefficients

Velocity Pressure Coefficients (K _z) and Velocity Pressure (q _z)							
Level	Elevation (ft)	Kz	q _z (psf)				
Event Level	0.00	0.85	26.63				
Main Concourse	17.65	0.877	27.46				
Club Level	37.31	1.02	32.08				
Low Roof	53.52	1.1	34.59				
High Roof	67.52	1.16	36.44				

BIM THESIS PROPOSAL

HPR Integrated Design

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

WIND ANALYSIS FOR HIGH-RISE BUILDINGS (> 60 FT) Calculates MWFRS and C&C Loads as per ASCE 7-10

DESCRIPTION:

INPUT DATA

Exposure Category (ASCE 7-10, 26.7.3)

Importance Factor (ASCE 7-10, Table 1.5-2) Basic Wind Speed (ASCE 7-10, 26.5.1)

Topographic Factor (ASCE 7-10, 26.8 & Table 26.8-1)

Enclosure Classifications (ASCE 7-10,

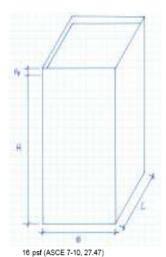
Building Height to Roof Parapet Height

Roof Slope Roof Ridge Orientation (Parallel to)

Building Length Building Width

Effective Area of Mullion

Effective Area of Panel


Structural System:

Natural Frequency (ASCE 7-10, 26.9)

120 mph 1.00 Enclosed H = 81.52 ft 0 <10° 360 252 B = 0 0 ft^2 Structural Steel Moment Frames n1 = 0.6567 Hz or (1/T)

С

1.15

ANALYSIS

Velocity Pressures

 $q_z = 0.00256 K_z K_{zt} K_d V^2$

 q_z = velocity pressure at height, z (ASCE 7-10, Eq. 27.3-1 & Eq. 30.3-1)

K_z = velocity pressure exposure coefficient evaluated

 K_d = wind directionality factor. (ASCE 7-10, Table26.6-1) z = height above the ground

(1.3-1 & Eq. 30.3-1)	pmin =	10
d at height, z. (ASCE 7-10, Table 27.3-1)		
6-1)	Kd =	0.85

	z = neight abo	ve tne ground									
z (ft)	0-15	20	25	30	40	50	60	70	80	81.52	
K _z	0.85	0.90	0.94	0.98	1.04	1.09	1.13	1.17	1.21	1.21	
q _z (psf)	26.63	28.20	29.45	30.71	32.59	34.15	35.41	36.79	37.84	37.99	
z (ft)										81.52	
K _z										1.21	
q, (psf)										37.99	

Design Pressures for MWFRS

 $p = q G C_p - q_h (G C_{pi})$

p = pressure on surface of rigid building with height, h (ASCE 7-10, Eq. 27.4-1)

 $q = q_z$ for windward wall at height z above the ground, see table above

G C_{pi} = +/- 0.18 = internal pressure coefficient (ASCE 7-10, Table 26.11-1)

 $q_h = q_e$ value at the mean roof height, h, for leeward wall, side walls, and roof Cp = external pressure coefficient (ASCE 7-10, Table 27.4-1) G = gust effect factor (ASCE 7-10, 26.9) = 0.923

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 I_Z \sqrt{g_g^2 g^2 + g_R^2 R^2}}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 < 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 I_Z \sqrt{g_g^2 g^2 + g_R^2 R^2}}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 < 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

$$G = \begin{cases} 0.925 \left(\frac{1 + 1.7 g_g I_Z Q}{1 + 1.7 g_g I_Z} \right), & for \quad n_1 \ge 1.0 \end{cases}$$

Wall Pressure Coefficients, Cp (ASCE 7-10, Figure 27.4-1)								
Wall	Wall Wind L/B C _p							
Windward	All	All	0.80					
Leeward	Perp to L	0.70	-0.50					
Leeward								
Side Walls	All	All	-0.70					

Re	Roof Pressure Coefficients, Cp Normal to Ridge (θ≥10°) (ASCE 7-10, Figure 27.4-1)							
h/L	h/L Windward Leeward							
0.226	Positive	N/A	N/A					
0.220	Negative	N/A	N/A					
h/B		Windward	Leeward					
0.323	Positive	N/A	N/A					
0.323	Negative	N/A	N/A					

Roof Pressure Coefficients, Cp Parallel to Ridge (ASCE 7-10, Figure 27.4-1)									
Roof	Roof h/B Distance Cp								
To L Face	0.323	40.76	-0.900						
To L Face	0.323	81.52	-0.900						
To L Face	0.323	163.04	-0.500						
To L Face	0.323	252	-0.300						
Roof	h/L	Distance	Ср						
To B Face	0.226	40.76	-0.900						
To B Face	0.226	81.52	-0.900						
To B Face									
To B Face	0.226	360	-0.300						

Roof Pressure Coefficients, Cp Normal to Ridge (8<10°) (ASCE 7-10, Figure 27.4-1)								
Roof h/B Distance Cp								
To L Face	0.323	40.76	-0.900					
To L Face	0.323	81.52	-0.900					
To L Face	0.323	163.04	-0.500					
To L Face	0.323	252	-0.300					
Roof	h/L	Distance	Ср					
To B Face	0.226	40.76	-0.900					
To B Face	0.226	81.52	-0.900					
To B Face								
To B Face	0.226	360	-0.300					

Q = 0.826

 $L_z = 540.94$

 $\beta = 0.01$

 $R_{\rm L} = 0.033$

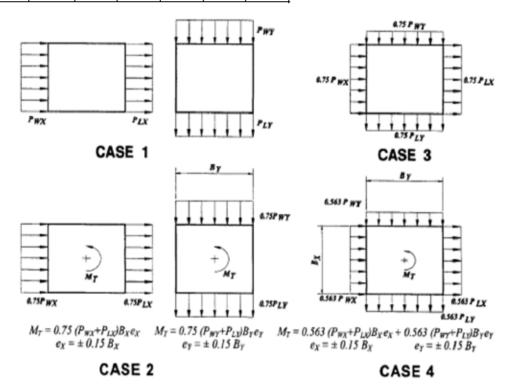
R = 0.461

Vz= 121.54

MWFRS Net Pressures are Given by the Following Tables

		P (psf) with
Surface	z (ft)	GCpi	-GCpi
Windward Wall	z (ft) 0-15 20 25 30 40 50 60 70 80 81.52	12.82 13.98 14.90 15.83 17.22 18.37 19.30 20.32 21.09 21.20	-GCpi 26.50 27.65 28.58 29.50 30.89 32.05 32.97 33.99 34.77 34.88

		P (psf) with			
Surface	z(ft)	GCpi	-Gcpi		
Side Wall	All	-31.37	-17.70		


Normal t	Normal to L Face		P (psf) with		o B Face	P (psf) with	
Surface	z (ft)	GCpi	-Gcpi	Surface	Surface z (ft)		-Gcpi
Leeward	All	-24.36	-10.69	Leeward	All	-21.38	-7.68

Normal to L Face		P (psf) with		Normal t	o B Face	P (psf) with	
Surface	z (ft)	GCpi	-Gcpi	Surface	z (ft)	GCpi	-Gcpi
0 - 40.76 -38.38 -24.71		0 - 40.76	-38.38	-24.71			
Roof	81.52	-38.38	-24.71	Roof	81.52	-38.38	-24.71
ROOI	163.04	-24.36	-10.69	1001	163.04	-24.36	-10.69
	252	-17.35	-3.68		360	-17.35	-3.68

Windward		P (psf) with		Leev	ward	P (psf) with	
Surface	Sign	GCpi	-Gcpi	Surface	Sign	GCpi	-Gcpi
Roof	Positive	N/A	N/A	Roof	Positive	N/A	N/A
Normal to	Negative	N/A	N/A	Normal to	Negative	N/A	N/A

Normal to L Face		P (psf) with		Normal t	o B Face	P (psf) with	
Surface	z (ft)	GCpi	-Gcpi	Surface	z (ft)	GCpi	-Gcpi
Roof Parallel to Ridge	0 - 40.76 81.52 163.04 252	N/A N/A N/A N/A	N/A N/A N/A N/A	Roof Parallel to Ridge	0 - 40.76 81.52 163.04 360	N/A N/A N/A N/A	N/A N/A N/A N/A

Base Forces		Normal to L Face		Normal to B Face		Wind at Angle		ASCE
Da	se roices	Case 1	Case 2	Case 1	Case 2	Case 3	Case 4	7-10
V _{Bsse}	(kips)	1624	1218	1137	853	2071	1166	ASCE 7-10
M _{Date}	(ft-kips)	76155	57116	53308	39981	97097	72888	Flg 27.4-8 (Shown
M _T	(ft-kips)	0	65783	0	32234	0	73578	Below)
V _{min}	(kips)	470	470	329	329	599	449	ASCE 7-10 27.4.7

Seismic Design Loads & Results

■USGS "DesignMaps" Summary Report

Print View Detailed Report

User-Specified Input

Report Title Penn State Ice Arena - 2012 PSU Thesis

Mon April 16, 2012 17:18:13 UTC

Building Code Reference Document 2010 ASCE 7 Standard

(which makes use of 2008 USGS hazard data)

Site Coordinates 40.80655°N, 77.85732°W

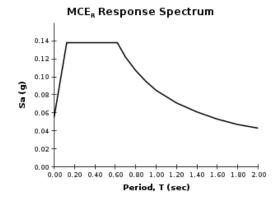
Site Soil Classification Site Class C - "Very Dense Soil and Soft Rock"

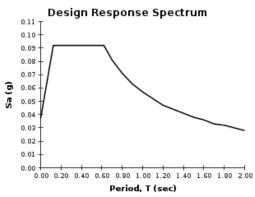
Site Risk Category Risk Category III - "Substantial Hazard"

USGS-Provided Output

$$S_3 = 0.115 g$$

 $S_1 = 0.050 g$


 $S_{MS} = 0.138 g$


 $S_{ps} = 0.092 g$

S_{M1} = 0.085 g

 $S_{D1} = 0.057 g$

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

For PGAM, TL, CRE, and CRL values, please view the detailed report.

BIM THESIS PROPOSAL

HPR Integrated Design

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

2010 ASCE 7 Standard (40.80655°N, 77.85732°W)

Section 11.4.1 - Mapped Acceleration Parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain $S_{\scriptscriptstyle 2})$ and 1.3 (to obtain $S_{\scriptscriptstyle 1}).$

From Figure 22-1	$S_s = 0.115 g$
From Figure 22-2	S ₁ = 0.050 g

Section 11.4.2 — Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class C, based on the site soil properties in accordance with Chapter 20.

Table	20	3_1	Site	Class	cifica	tio

Site Class		N or N _{ch}	_ 5 _u
A. Hard Rock	>5,000 ft/s	N/A	N/A
B. Rock	2,500 to 5,000 ft/s	N/A	N/A
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf
E Coft alay soil	<600 ft/s	×15	<1.000 pcf

Any profile with more than 10 ft of soil having the characteristics:

- Plasticity index PI > 20,
 Moisture content w ≥ 40%, and
- Undrained shear strength $s_u < 500 \text{ psf}$

F. Soils requiring site response analysis in accordance with Section See Section 20.3.1

For SI: 1ft/s = 0.3048 m/s 1lb/ft2 = 0.0479 kN/m2

 $Section \ 11.4.3 - Site \ Coefficients \ and \ Risk-Targeted \ Maximum \ Considered \ Earthquake \ (\underline{MCE_s}) \ Spectral \ Response \ Acceleration \ Parameters$

		Table 11.4-1: S	Site Coefficient F.		
Site Class	Mapped MCE ,	Spectral Respo	onse Acceleration	Parameter a	at Short Period
	S₂ ≤ 0.25	$S_s = 0.5$	$S_s = 0.75$	S ₅ = 1	S _s ≥ 1.25
А	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F		See Sec	tion 11.4.7 of A	SCE 7	

 ${\it javascriptvoid} (null Note: \ Use \ straight-line \ interpolation \ for \ intermediate \ values \ of \ S_s$

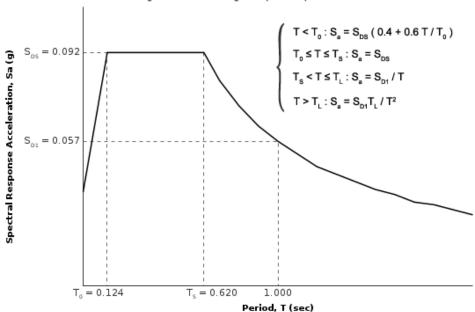
		Table 11.4-2:	Site Coefficient F,		
Site Class	Mapped MCE	g Spectral Res	ponse Accelerat	ion Parameter a	at 1–s Period
	S₁ ≤ 0.1	S ₁ = 0.2	S, = 0.3	S ₁ = 0.4	S₁ ≥ 0.5
А	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.7	1.6	1.5	1.4	1.3
D	2.4	2.0	1.8	1.6	1.5
E	3.5	3.2	2.8	2.4	2.4
F		See Se	ction 11.4.7 of	ASCE 7	

Note: Use straight-line interpolation for intermediate values of S₁

For Site Class = 2 and S_i = 0.050, F_v = 1.700

Equation (11.4-1):	$S_{MS} = F_a S_s = 1.200 \times 0.115 = 0.138 g$
Equation (11.4-2):	S _{w1} = F ₂ S ₁ = 1.700 x 0.050 = 0.085 q

Section 11.4.4 — Design Spectral Acceleration Parameters


Equation (11.4-3):	$S_{DS} = \frac{9}{3} S_{MS} = \frac{9}{3} \times 0.138 = 0.092 g$
Equation (11.4-4):	$S_{D1} = \frac{9}{3} S_{M1} = \frac{9}{3} \times 0.085 = 0.057 g$

Section 11.4.5 — Design Response Spectrum

From Figure 22-12

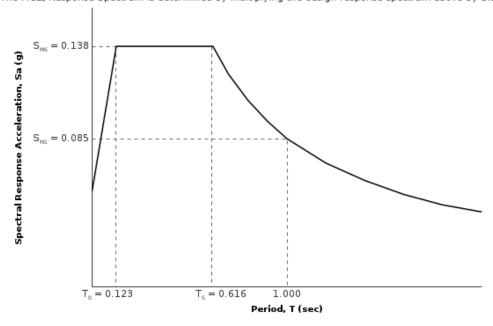

 $T_L = 6$ seconds

Figure 11.4-1: Design Response Spectrum

Section 11.4.6 — Risk-Targeted Maximum Considered Earthquake (MCE_R) Response Spectrum

The MCE_s Response Spectrum is determined by multiplying the design response spectrum above by 1.5.

BIM THESIS PROPOSAL

HPR Integrated Design

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

Section 11.6 — Seismic Design Category

Table 11.6-1 Seismic Design Category Based on Short Period Response Acceleration Parameter

VALUE OF S _{DS}		RISK CATEGORY	
VALUE OF 5 ₀₅	I or II	III	IV
S _{os} < 0.167g	А	А	А
0.167g ≤ S _{os} < 0.33g	В	В	С
0.33g ≤ S _{os} < 0.50g	С	С	D
0.50g ≤ S _{os}	D	D	D

For Risk Category = III and $S_{os} = 0.092$, Seismic Design Category = A

Table 11.6-2 Seismic Design Category Based on 1-S Period Response Acceleration Parameter

VALUE OF S _m		RISK CATEGORY	
VALUE OF S ₀₁	I or II	III	IV
S ₀₁ < 0.067g	А	А	А
0.067g ≤ S ₀₁ < 0.133g	В	В	С
0.133g ≤ S ₀₁ < 0.20g	С	С	D
0.20g ≤ S ₀₁	D	D	D

For Risk Category = III and S_{01} = 0.057, Seismic Design Category = A

Note: When S, is greater than 0.75g, the Seismic Design Category is E for buildings in Risk Categories I, II, and III, and F for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 11.6-1 or 11.6-2" = A

Long Span Truss Design

Table 60: Design Criteria for Trusses X8 & X9 - Scoreboard Rigging

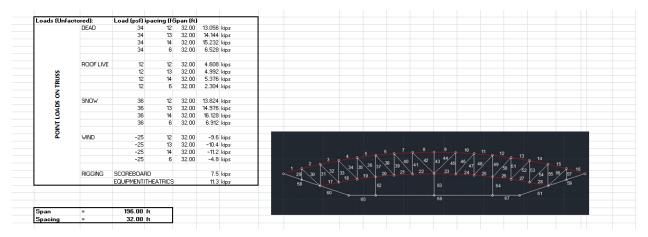
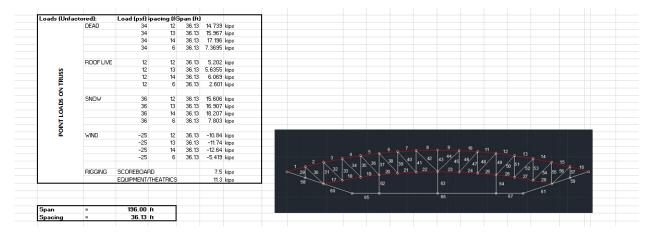



Table 61: Design Criteria for Trusses X4 & X13 - Worse Case Span (End)

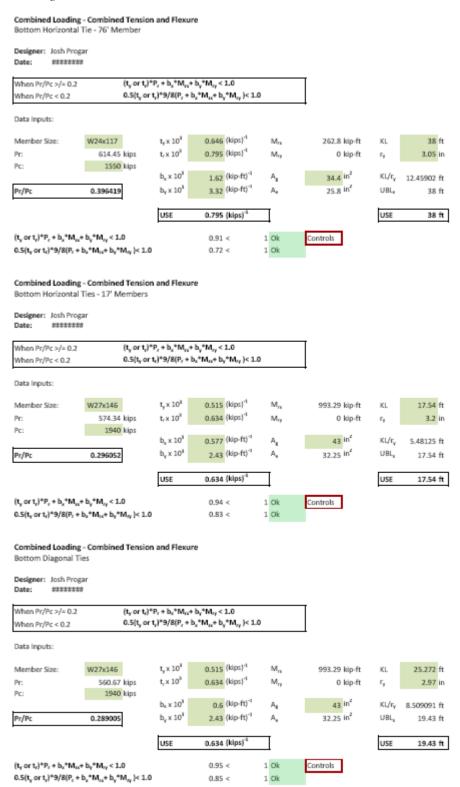

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

Table 62: Member Sizing - Trusses Along X8 & X9 - Scoreboard Rigging

*	+	Longth (M)	_	E (Ns)	Controlling IC	Londing		9.00	9		2	8,69	8	8	W. Galler			Water Print
		4	t	ŀ		200	Tension/Compression?	200	ú	Å	AL / IN			+		Meglected?	_	< df (m) 1.00
 	+	12,328	629	-	20+1 65+0 5W	425.48	Compression	425.63	12328	2.46	2020105	3 3	0 0	8 27	e s	Yes	0.029	1233
	+	12.234	t	29000	20+1.65+0.5W	461.5	Compression	464.5	12234	2.46	4978171	562	0	282	1481	Yes	0.010	1233
	Н	12.156	Н	+1	2D+1.6S+0.5W	488.48	Compression	488.48	12156	2.46	49 41463	562	0	267	9.81	Yes	0.021	1216
++++++	†	12.094	1	-	2D+1,6S+0.5W	494.74	Compre mon	494.74	12094	2.46	4.91626	262	0	287	223	Yes	0.006	1209
+++++	†	12.002	Z 3	0000	20+1 68+0 SW	534.68	Compression	534.68	12052	2.46	48 99187	663	0 0	702	17.80	Yes	0.012	1205
++++	†	14 000	†	+	2071 8540 SW	200 000	Compression	2007.00	14000	2.40	9,601/63	0000	0	2012	27.12	400	0.003	1400
HH	t	14 000	t	+	2D41 6540 5W	502.03	Compression	582.83	14000	2.46	5691057	599	0	70.2	33.46	Ves.	0.054	1400
₩	t	12.021	t	۳	2D+1 65+0 5W	SSB A7	Compression	568.47	12021	2.46	4.0 00505	663	0	702	11.81	Yes	0.019	1202
Н	t	12.052	t	100	20+1.65+0.5W	533.46	Compression	533.46	12052	2.46	43 99137	663	0	702	17.34	Yes	0.012	1205
	Н	12.094	_	29 000 17	20+1.65+0.5W	492.88	Compression	492.88	12094	2.46	4.91626	562	0	295	5.12	Yes	0.006	1209
4	\forall	12.156		=1	20+1,65+0.5W	486.11	Compression	486.11	12156	2.46	49.41463	5.62	0	267	9.79	Yes	0.021	1216
W14bot3	\dashv	12.234	420		2D+1,6S+0.5W	659.45	Compre mon	53.45	12234	2.46	4973171	2,02	0	287	14.81	Yes	0.009	1223
4	+	12,328	1	ei i	20+1,65+0.5W	422.96	Compression	422.96	12328	2.46	5011382	262	0	267	9 10 10 10 10 10 10 10 10 10 10 10 10 10	Yes	0.028	1233
4	+		1	=	20+1,65+0.5W	416.73	Compression	416.73	12488	2.46	20,56088	262	0	28	37.47	Yes	0.035	1244
+	\dagger		†	+	20+1.65+0.5W	156.46	Compression	156.46	1223	2.48	49.72764	200	0	283	R 18	Yes	0.045	1223
Without	\dagger	12.159	800	2000	2041 0040 5W	113.0	Compression	113.6	12130	2.40	4.9 4.001.0	2000	0 0	200	10 10	Tes.	0.028	1216
+	807		1	+	ACH J. JOHN DAN	444.0	Compression Compression	444.5	12055	99.0	49 13654	2000	0	183	36.00	Yes	0.046	1208
+	$^{+}$	12.010		1	2041 6640 SW	62.6	Commercial	62.6	12010	2.00	48.85772	5,60	0	663	16.5	Ve v	0.000	1209
+	†		1	+	2011 0010 DA	21 00	Commencial	21 00	14000	3.46	5775000	200		500	207	2 4 5	0.000	1400
+	8 8	2002	1	+	WC 040 000	20.00	Companion	20.46	14000	26.5	2001002	200	0	8 2	31.00	Ves	0.000	1400
W. John Co.	3 8	45 040	1	+	2014 6540 GW	00 00	Companyation	00 00	13040	2.46	4000000	260		253	80 99	404	0 000	4303
+	$^{+}$	10 000	†	30000	2011 8040 SW	113 94	Commencian	113 94	13069	2.00	48 99187	200	0	693	00 00	484	0.000	1305
Without	$^{+}$	12 001	470	30000	2041 6540 5W	20.11	Compagnion	111111111111111111111111111111111111111	12001	2.46	491500	202	0	683	2 2	2 2 2	0.000	1200
╀	$^{+}$	12 150	†	+	2011 0010 DW	110.35	Companion	110 35	12150	2.46	4043003	200		28.2	12 80	No.	0000	1216
+	$^{+}$		†	+	2041 6540 SW	150.77	Common scion	150.77	12233	2.46	4972764	262	0	223	00.00	Vac	0.086	1223
╀	+	7.324		39000	3D+1 66+0 5W	27.06	Comme eckn	27.06	7339	1.33	5877396	874	0	287	12.87	Vec	0.005	0738
╀	t	16.406	t	+	20+1.65+0.5W	12.21	Tersion	0	16406	123	13.33821	265	12.21	183	4.05	Yes	0.092	1641
WESTER	t	14	H	-	3D+1.65+0.5W	70.33	Compre nion	70.33	14000	1.23	11,30211	300	0	237	2.6	Yes	0.046	1400
╀	t	16,708	╁	-	30+1.65+0.5W	88.08	Tersion	0	16708	1.23	13,58374	248	88	237	3.16	Yes	0.007	1671
H	H	14	Н	ri	3D+1,6S+0.5W	828	Compression	25.00	14000	1.28	11,38211	283	0	287	9.08	Yes	0.017	1400
H	Н	16.999	61.9	29 000 13	2D+1.6S+0.5W	40.29	Tersion	0	16999	1.23	13.82033	2.48	40.29	23.7	1.99	Yes	0.018	1700
W0 ×1.0	Н	13.999	Н	1	W2-0+28, 1+05.	29.63	Compre mon	59.65	13999	1.23	51 SE 11	2.03	0	237	15.9	Yes	0.009	1400
\dashv	1.00	17,328	œ.	29 000 17	20+1.65+0.5W	12.13	Tension	0	17328	1.23	14.08.78	230	12.13	23.7	4.44	Yes	0.072	1.733
+	100	14	6	29000	20+1,68+0.5W	78.19	Compression	78.19	14000	1.23	11,38211	283	0	287	2.84	Yes	0.052	1400
+	1.00	17.608	619	=	2D+1.8S+0.5W	60.07	Tersion	0	17,608	133	14.315/6	230	60.07	237	412	Yes	0.003	1761
+	8 1	14	6	-	2D+1,65+0.5W	7 18	Comprension	28.2	14000	121	11.36211	2.03	0	727	10.23	Yes	0.016	1400
W8x18	88	17,931	o. c	2000	WS-0487 1407	25.53	Tension	0 5	17931	773	14.57805	280	27.57	237	8 8	Yes	0.035	1793
+	†	10 504	+	+	20+1,65+0.5W	57.28	Compression	57.48	14000	1.43	117.88.111	582	9 9	40.0	107	464	0.001	1400
+	†	17.204	010	20000	2011 0010 DW	14, 70	Common or low	14.70	14000	9:	11 (00)11	2000	0	207	707	183	0.000	1400
+	t	19.596	+	-	3D+1 6S+0 5W	19.95	Tention	0	19594	1.23	15,93008	212	19.92	237	101	, And	0.075	1959
+	100	14	╁	+	30+1.65+0.5W	87.9	Compression	87.9	14000	1.28	11.38211	288	0	287	7,16	Yes	0.001	1400
L	1.00	17,931	┝	29 000 17	3D+1.6S+0.5W	52.44	Tersion	0	17931	1.28	14.57805	230	52.44	287	2.6	Yes	0.027	1793
H	1.00	14	61.9	29 000 13	2D+1.6S+0.5W	58.93	Compression	58.93	14000	1.23	11.38211	2.83	0	23.7	10.32	Yes	0.016	1400
	Н	17.608	Н	-	2D+1.6S+0.5W	60.34	Temion	0	17.608	1.23	M31565	230	60.34	237	4.18	Yes	0.003	1761
W8xd8	100	3.4	œ.	eë .	20+1.65+0.5W	73.86	Compression	73.86	14000	1.23	11.38211	283	0	23.7	2.87	Yes	0.052	1400
+	100	17.508	n 0	2000	20+1,65+0.5W	00,00	Consessor colons	00.00	175.00	1.23	14 00044	200	12.95	40.0	4.90	465	0.075	17.55
╀	$^{+}$	14,000	610	٠	2041 6040 504	41.21	Tamina	0	16000	12.	11 03000	2.40	41.31	202	200	2 20	0.018	1700
Wexta	$^{+}$	1.4	ı a	+	3D+1 4S+0 SW	22.64	Compre stion	55.64	14000	1.23	11.38211	283	0	237	6.13	Yes	0.017	1400
\vdash	╁	16.708	on.	πi	3D+1.6S+0.5W	51.44	Tersion	0	16708	1.23	13,58374	2.48	51.44	287	3.21	Yes	0.008	1671
W8x18	100	14	61.9	29 000 17	2D+1.6S+0.5W	71.22	Compression	71.22	14000	1.23	11.38211	2.83	0	23.7	2.56	Yes	0.046	1400
+	7	16.406	\dashv		2D+1.6S+0.5W	11.6	Temion	0	16/106	1.23	13.33021	2.40	11.6	237	Ŧ	Yes	0.091	1.641
4	1.00	7.229	+	=	WS-0+37 T-02-	26,73	Compre stion	26.73	72.20	123	5877236	374	0	237	0 1	Yes	0.005	0.723
WZ7 13 49	†	25.272	0050	23 000	20+1,65+0.5W	477.84	Tersion	0 0	25272	1.35	1296	-	529.02	1940	400.00	00 m	0.283	2527
╀	t	19.475	╁	+	2D+1 6S+0 SW	514.05	Temion	0	19435	181	0.0000000		SMR	1940	818.35	No.	0.038	1946
╀	t	19.425	╀	-	30+1 48+0 SW	534.5	Tension	0	19435	1.85	9.9 000007		514.5	1940	818.82	No	0.039	1.944
╀	t	11.917	╀	1	20+1.65+0.5W	69.37	Compression	69.37	11917	87	3.2 20811	844	0	506	272.53	No	0.108	1192
W14668	Н	14	722	29 000 13	2D+1.6S+0.5W	15.3	Tension	0	14000	3.7	3.783784	8.44	153	908	1.01	Yes	0.002	1400
Ц	1.00	11.917	Н	=1	20+1.85+0.5W	60.35	Compression	69.35	11917	3.7	3.2 20811	844	0	506	274.24	Yes	0.109	1192
W27×1-46	+	17.502	+		2D+1.65+0.5W	\$12.21	Temion	0	17542	138	0.995097		512.21	1940	810.35	No	0.034	1754
4	†	2.6	4020	29000	WS-0+37 T-02*1	S40.24	Tension	0	76000	3.27	23.24159		540.24	1550	214.94	ON	1.300	7600

Table 63: Member Sizing - Worst Case Scenario Truss

Combined Loading Calculations

Combined Loading - Combined Compression and Flexure

Bottom Vertical Tie

Designer: Josh Progar Date: 4/13/2012

When Pr/Pc >/= 0.2	$p*P_r + b_x*M_{rx} + b_y*M_{ry} < 1.0$
When Pr/Pc < 0.2	$0.5p*P_r*9/8(b_x*M_{rx}+b_y*M_{ry})<1.0$

 $p \times 10^{3}$

 $b_{x} \times 10^{3}$

Data Inputs:

W14x68 Member Size: Pr: 82.12 kips Pc: 700 kips

Pr/Pc	0.117314

	b _y x 10 ³	6.42 (kip-ft) ⁻¹	A_{e}
-	USE	1.43 (kips) ⁻¹	1

$$p*P_r + b_x*M_{rx} + b_y*M_{ry} < 1.0$$

 $0.5p*P_r*9/8(b_x*M_{rx} + b_y*M_{ry}) < 1.0$

1.43 (kips)⁻¹

2.19 (kip-ft)⁻¹

 M_{rx}

 M_{ry}

 A_{g}

Mechanical Load

System Checksums By ACADEMIC

AHU-10								Va	Variable Volume Reheat (30% Min Flow Default)	me Re	heat (30% l	Min Flow D	efault)
	COOLING COIL P	SOIL PEAK		°	CLG SPACE PEAK	PEAK		HEATING COIL PEAK	IL PEAK		TEMP	TEMPERATURES	S
Pea	Peaked at Time: Outside Air.	Mo/F OADB/WB/H	MolHr. 77/15 OADBWBIHR: 91/74/101		Mo/Hr. 7 / 20 OADB: 83	33		Mo/Hr: Hea OADB: 11	Mo/Hr: Heating Design DADB: 11		SADB Ra Plenum		Heating 65.0
	Space Sens. + Lat.	Sens. + Lat	Total	Net Percent Fotal Of Total	Sensible	Percent Of Total	ļ	Space Peak Space Sens	Coil Peak Percent Tot Sens Of Total	Frotal	Return Ret/OA	295 295 295	1100
Envelope Loads Skylite Solar Skylite Cond	1	00	00	00	00	00	Envelope Loads Skylite Solar Skylite Cond	00	00	88	Fn BldTD Fn Frict	24	888
Roof Cond Glass Solar	64,99	900	64,996	m 0 0	124,156	400	Roof Cond Glass Solar	701,76-	707,76-	600	₹	AIRFLOWS	
Wall Cond		0	000	000	000	000	Wall Cond		000	888	Diffuser	Cooling 47,755	Heating 19,479
Floor Adjacent Floor	-272,910	o	-272,910	, - - 0	-272,910	, ² / ₂ c	Floor Adiacent Floor	-272,910	-272,910	25.20	Terminal Main Fan	47,755	19,479
Infiltration	127,836	•	127,836	ω ω	44,180	00	Infiltration	-136,328	-136,328	12.59	Sec Fan	0	0
Sub Total ==>	-80,078	0	-80,078	ņ	-104,574	-20	Sub Total ==>	-506,945	-506,945	46.81	Nom Vent	24,068	19,471
Internal Loads							Internal Loads				AHU Vent Infil	24,068	19,471
Lights	1,020,600	00	63,141	e 4	63,141	108	Lights	63,141	63,141	-5.83	Min Stop/Rh Return	19,479	21,772
Misc		0	°	0	0	0	Misc	0	0	000	Exhaust	26,360	21,764
Sub Total ==>	1,083,741	•	1,083,741	4	630,141	120	Sub Total ==>	819,141	819,141	-75.64	Auxiliary	•••	0
Ceiling Load Ventilation Load	ad 112	-112	1.341.920	949	204	00	Ceiling Load Ventilation Load	-471	-1.167.743	106.91	Leakage Dwn Leakage Ups	00	00
Adj Air Trans Heat			00	00	0	0	Adj Air Trans Heat	00	00	0 8			
OwUndr Sizing	0 6	28 143	08,440	0+	0	0	Exhaust Heat		90,379	8,8	ENGIN	ENGINEERING CKS	KS
Sup, Fan Heat Ret, Fan Heat		0	170,722	~0			RA Preheat Diff. Additional Reheat		-122,810	134	% OA		Heating 100.0
Duct Heat Pkup	p tt Pkun	0	00	00			Underfir Sun Ht Pkun		0	000	cfm/ff cfm/ton	230.13	0.84
Supply Air Leakage	ikage	0	0	0			Supply Air Leakage		0	0.00	ft²/ton	111.44	0
Grand Total ==>	1,003,775	-26,255	2,490,163	100.00	525,771	100.00	100.00 Grand Total ==>	311,725	-1,082,958	100.00	No. People	3,024	-56.95

			COOLING	COIL SEL	ECT	NO						AREAS	s	Г	HEAT	HEATING COIL SELECTION	SELECT	S S	
	Total	Total Capacity	Sens	Cap. Coil Airflow Enter DB/	Enter	er DB/WB/HR	/HR	Leave	eave DB/WB/HR	/B/HR	5	oss Total	Glass			CapacityCo	II Airflow	Ē	Lvg
	o	MB		E U	ů.	į.	gryp	į.	Ļ	gr/lb			ŧ	<u>%</u>		MBh	ctm	cfm °F	į.
Main Clg	207.5	2,490.2	1,321.6	44,322	79.5	68.3	87.5	51.5 49.9	49.9	51.4	Floor	23,125			Main Htg	-289.5	19,479	51.5	65.0
Aux Clg	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	Part				Aux Htg	0.0	0	0.0	0.0
Opt Vent	0.0	0.0		0	0.0	0.0	0.0	0.0	0.0	0.0	Int Door				Preheat	-1,073.4	24,068	11.0	51.5
											EXF								_
Total	207.5	2,490.2									Roof	22,731	0	0	Humidif	0.0	0	0.0	0.0
											Wall	0	0	0	Opt Vent	0.0	0	0.0	0.0
											Ext Door	0	0	0	Total	-1,362.8			_

RACE® 700 v6.2.6.5 calculated at 10:31 PM on 03/26/2012 Alternative - 1 System Checksums Report Page 2 of 26

System Checksums By ACADEMIC

AHU-10

Variable Volume Reheat (30% Min Flow Default)

COOLING	COOLING COIL PEAK	Ι.	0	CLG SPACE PEAK	E PEAK		I	EATING	HEATING COIL PEAK		TEM		s
Peaked at Time: Outside Air.	Mo/Hr.	Mo/Hr: 7 / 15 OADB/WB/HR: 91 / 74 / 101		Mo/Hr: 7 / 20 OADB: 83	7/20 83			Mo/Hr: F	Heating Design 11		SADB Ra Plenum		Heating 65.0 60.9
Space Sens. + Lat.	Sens. + Lat	Net F Total O	Net Percent Total Of Total	Space Sensible Blu/h	Percent Of Total		Si Si	Space Peak Space Sens Bruth	Coil Peak Percent Tot Sens Of Tota Bluth (%)	Sens Of Total	Ret/OA Fn MtrTD	79.1	9120
Envelope Loads Skylite Solar 0		0	°	0	0	Envelope Loads Skylite Solar	oads	0	°		Fn BldTD Fn Frict	2.4	0.0
Skylite Cond 73,202		73,202	0 60	139,832	28	Skylite Cond Roof Cond	pup	-110,043	-110,043	0.00	I		\llbracket
Cond		9	000	1	000	Glass Solar Glass/Door Cond	or Cond	900	2	386	=	Cooling	Heating
Partition/Door 0		0.39	00	12,13/	VO!	Partition/Door	Joor	000,02-	000,02-	000	Diffuser	50,282	20,237
Floor -272,910 Adjacent Floor 0	0	-272,910	-0	-272,910	0	Floor Adjacent Floor	Floor	-272,910	-272,910	25.19	Main Fan	50,282	20,237
Infiltration 130,399	o	130,399	9 0	44,180	eo 4	Infiltration Sub Total ==>	î	-136,328	-136,328	12.58	Sec Fan	24.068	0 20 228
			·			Internal Loads	sp				AHU Vent	24,068	20,229
1,020,600	00	63,141	2 9	63,141 567,000	102	Lights		756,000	63,141	-5.83	Min Stop/Rh Return	20,237	20,237
Misc 0	0 0	1 083 741	0 8	630 141	0 11	Misc Sub Total>	^	819 141	819141	0.00	Exhaust Rm Exh	26.360	22,522
12	1	0	0	221	0	Ceiling Load	P	-509	0	0.00	Auxiliary Leakage Dwn	00	00
Ventilation Load Adj Air Trans Heat	•	1,368,813	400	••	00	Adj Air Trans Heat	Load 18 Heat	000	-1,202,804	0.02	Leakage Ups	0	•
Ov/Undr Sizing	900	000	0,	0	0	Exhaust Heat	at at	}	101,182	9.94	ENGIN	ENGINEERING CKS	(S
Exnaust neat Sup. Fan Heat Ret Fan Heat	010,02-	177,232	- 10			NA Preheat Diff. Additional Reheat	Diff.		-90,135		% 0A		Heating 100.0
Duct Heat Pkup Underfir Sup Ht Pkup Supply Air Leakage	000	000	000			Underfir Sup Ht Pkup Supply Air Leakage	ip Ht Pkup Leakage		000	000	cfm/ff cfm/ton ft²/ton	237.34	0.88
Grand Total ==> 1,024,946	-28,737	2,542,254	100.00	553,600		100.00 Grand Total ==>	<u> </u>	279,050	-1,083,380	2	Btu/hr-ff* No. People	3,024	-59.42
Total Capacity ton MBh	Sens Cap. C	COIL SELECTION	ECTION Enter DBA	WB/HR gr/b	Leave D	Leave DB/WB/HR	Grod	AREAS Gross Total	Glass ft² (%)	HE/	ATING COIL Capacity MBh	HEATING COIL SELECTION CapacityCoil Airflow En	Ent Lvg
			-			-			=				-

RACE® 700 v6.2.6.5 calculated at 10:31 PM on 03/26/2012 Alternative - 2 System Checksums Report Page 15 of 26

65.0 0.0 51.5

20,237 51.5 0 0.0 24,068 11.0

-300.8 0.0 -1,073.4

Humidiff Opt Vent

000

8,270 25,601 3,500

Leave DB/WB/HR °F °F gr/lb 51.5 49.5 49.9 0.0 0.0 0.0

85.4 0.0 0.0

0.0

2,542.3 0.0 0.0

211.9

Main Clg Aux Clg Opt Vent

2,542.3

Total

BIM PSU ICE ARENA-2.trc PSU ICE ARENA Project Name: Datas et Name:

System Checksums

By ACADEMIC

AHU-11

Variable Volume Reheat (30% Min Flow Default)

	Heating 65.0	80.9	65.0	0	000	bracklet		Heating	20,031	20,031	0	20,024	20,024	07,4	22,312	enc'y	00	0	0	ceil		Heating	0.00		-	-59.59		Lvg	65.0	51.5
Œ		-		A		۳	L.	_						h					0		CKS		_				N	Ē.	51.5	-
TEMPERATURES	Cooling 55.0	68.0	79.7	0	2.4		AIRFLOWS	Cooling	49,721	49,72		23,895	23,895	20,00	52,001	26/1/6					ERING	Cooling	2.17	236.60	108.88	3,003	SEI ECT	il Airflow cfm	20,031	23,895
TEMPE	SADB	Ra Plenum	Return	Fn MtrTD	Fn BidTD Fn Frict	J	AIR	,	Diffuser	Terminal Main Fan	Sec Fan	Nom Vent	AHU Vent	Min Ston/Dh	Return	Exhaust	Auxiliary	Leakage Dwn	Leakage Ups		ENGINEERING CKS		% OA	cfm/ton	ft*/ton	Btu/hr·ff No. People	HEATING COIL SELECTION	CapacityCoil Airflow MBh cfm	-297.7	-1,085.7
		Ī	Peak Percent	(%) (%)	00:0	0.00	000	1.8	00.0	25.41	12.63	90.09		F 83	69.90	0.00	-75.72	0.00	110.85	000	-9.44	8.13	0.00	0.00	0.0	100.00	HEA		Main Htg	Preheat
OIL PEAK	Mo/Hr: Heating Design DADB: 11	Ì	Coil Peak Percent	Btuh	0	-110 043	0	-19.488	0	-272,910	-135,602	-538,044		K7 474	750,750	0	813,224	0	-1,190,607	00	101,400	-87,373	0	0 (0	-1,074,053		Glass ff: (%)		
HEATING COIL PEAK	Mo/Hr: H	Ì	Space Peak	Space Sells Btuth	0	110 043	0	-19.488	0	-272,910	-135,602	-538,044		R7.474	750,750	0	813,224	-196	00	0						274,984	AREAS	Gross Total	22,881	0 0
_					Envelope Loads Skylite Solar	Cond	Solar	Glass/Door Cond Wall Cond	n/Door	Floor	ion noi	Sub Total ==>	oads				Sub Total ==>	peo	Ventilation Load	Ov/Undr Sizing	Exhaust Heat	RA Preheat Diff.	Additional Reheat	Underfir Sup Ht Pkup	Supply Air Leakage	Grand Total ==>		_		Int Door
		1	1		rvelope Loan Skylite Solar	Skylite Cond Roof Cond	Glass Solar	Glass/Doo Wall Cond	Partition/Door	Floor	Infiltration	Sub 70	Internal Loads	- to hite	People	MISC	Seb 20	Ceiling Load	ntilatio ii Air T	/Undr	Exhaust Heat	Preh	dition	nderflr	pply #	and To		eave DB/WB/HR	69.0	0.0
Α¥		-	t t		<u>ٿ</u>	٠ و	0	Þ٨		80	0 00	-14	Ξ		8	•	4		0 0		ă c	2	Ä	5	3	0		ve DB/	49.4	
EPE	Mo/Hr: 7 / 20 DADB: 83		Percent	5	h	Ы		ı		Ċ								ī								100.00		Lea	51.5	0.0
CLG SPACE PEAK	Mo/Hr. 7 / OADB: 83		Space	Btu/h	0	139.832	0	10.926	0	-272,910	43,945	-78,207		A74 CA	563,063	0	625,537	85	00	0	0					547,415		B/HR gr/lb	85.5	0.0
ᆸ			t s	(%)	0	0 6	0	00	0	= 0	υ 0	Ņ			1 Q		£			0	0-		00	000			Z	Enter DB/WB/HR	67.8	0.0
	101		Net Percent		١		L			•								h								100.00	FCT		79.1	0.0
	Mo/Hr: 7 / 15 VB/HR: 91 / 74 / 101		Total	Btuh	0	73.200	0	9.772	0	-272,910	129,720	-60,216		R2 474	1,013,513		1,075,987	0	1,359,442		08 710	175,256		000	0	2,521,750	COIL SELECTION		45,499	00
COOLING COIL PEAK	Mo/Hr: OADB/WB/HR:		Sens. + Lat	Bfu/h	0	0	0	00		•	•	0				0	0	4	•		28 710	617,02	00	> (0	-28,766	COOLING	Sens Cap. MBh	1,331.5	0.0
OOLING	ced at Time: Outside Air.	Ì	Space Sens. + Lat.	Btu/h	0	73,202	0	9.772	0	-272,910	129,720	-60,216		62 474	1,013,513	0	1,075,987	47		I.	0			d	40	1,015,818		Fotal Capacity ton MBh	2,521.8	
ខ	Peaked at Time: Outside Air.		0		spe			8	ъ	ş	5	î			þ	þ	A		- Oad	Sizing	gu.	a t	ا پ	HtPk	eakag	î		Tota	210.2	0.0
	P.				Envelope Loads Skylite Solar	Skylite Cond Roof Cond	Glass Solar	Glass/Deor Cond Wall Cond	Partition/Door	Floor	Infiltration	Sub Total ==	Internal Loads	liohte	People	MISC	Sub Total ==>	Ceiling Load	Ventilation Load	Dehumid, Ov Sizing	Ow'Undr Sizing	Sup. Fan Heat	Ret. Fan Heat	Underfir Sup Ht Pkup	Supply Air Leakage	Grand Total ==>			Main Clg	Opt Vent
																											_			

Project Name: PSU ICE ARENA
Dataset Name: __BIM__PSU_ICE_ARENA;2:trc

2,521.8

210.2

Total

RACE® 700 v6.2.6.5 calculated at 10:31 PM on 03/26/2012 Alternative - 2 System Checksums Report Page 16 of 26

0.0

000

Structural Detailed Cost Estimates High Roof System Members Only

Table 64: Notre Dame Case Study - Truss System Estimate

COMPTON FAMILY ICE ARENA, NOTRE DAME UNIVERSITY - CASE STUDY #1

	ne, Indiana				ike-Off & Cost Estimate]	
	Structural Member	Quantity		Length (ft)	Total Weight (lb)	Total Weight (tons)	Cost/ft.	Cost		
5151	W12514	30	14	13	5460	2.73	\$25.21	\$9,833.07		
5151	W12x26	12	26	13	4056	2.028	\$41.06	\$6,405.36	1	
5151	W12×26	6	26	17.417	2717.052	1.358526	\$41.06	\$4,290.85	1	
5151	W21s44	4	44	25.583	4502.606	2.251304	\$65.86	\$6,739.59		
5151 5151	W12x26 W18x40	4 3	26 40	25.583 38.667	2660.632 4640.04	1.330316 2.32002	\$41.06 \$61.15	\$4,201.75 \$7,093.46		
5151 5151	W18840 W24s55	3	55	38.667	6380.055	3.1900275	\$80.03	\$9,283.56	1	
									1	
5151 5151	W18x35 W24x55	3	35 55	36 36	3780 5940	1.89	\$54.65 \$80.03	\$5,902.20	1	
5151 5151	W12514	1	14	14.75	206.5	2.97 0.10325	\$25.21	\$8,643.24 \$371.85	1	
5151	W16×26	1	26	24.833	645.658	0.322829	\$40.27	\$1,000.02		
5151	L4x4x3/8	12	20	15.647	013338	********	\$40.80	\$7,660.77	1	
5151	W24x55	1	55	36.417	2112.935	1.0564675	\$80.03	\$3,074.51		
5152	W24s55	1	55	36.417	2112.935	1.0564675	\$80.03	\$3,074.51	1	
5152	W16×26	1	26	24.833	645.658	0.322829	\$40.27	\$1,000.02		
5152	W12x14	1	14	14.75	206.5	0.10325	525.21	\$371.85		
5152	W12x14	30	14	13	5460	2.73	\$25.21	\$9,831.90	STM6	
5152	W12x26	12	26	13	4056	2.028	\$41.06	\$6,405.36	8	
5152	W12x26	5	26	17.417	2264.21	1.132105	\$41.06	\$3,575.71	×	
5152	W21s44	3	44	25.583	3376.956	1.688478	\$65.86	\$5,054.69	3	
5152	W12x26	2	26	25.583	1330.316	0.665158	\$41.06	\$2,100.88	35	
5152	W18=40	2	40	38.667	3093.36	1.54663	\$61.15	\$4,728.97	ã	
\$152	W24x55	3	55	38.667	6380.055	3.1900275	\$80.03	\$9,283.56	LEME NTARY FRAMENO	
5152	W18x35	2	35	36	2520	1.26	\$54.65	\$3,934.80	N N	
\$152	L4n4x3/8	12		15.647		3==	\$40.80	\$7,660.77		
\$152	W24x55	3	55	36	5940	2.97	\$80.03	\$8,643.24	AD BADA	
\$153	W12x14	23	14	13	4186	2.093	\$25.21	\$7,537.79	90	
\$153	W12x26	13	26	13	4394	2.197	\$41.06	\$6,939.14	ot	
\$153	W21x44	3	44	25.583	3376.956	1.688478	\$65.86	\$5,054.69		
5153	W12×26	2	26	25.583	1330.316	0.665158	\$41.06	\$2,100.88		
\$153	W18s40	2	40	38.667	3093.36	1.54663	\$61.15	\$4,728.97	1	
\$153	W24x55	3	55	38.667	6380.055	3.1900275	\$80.03	\$9,283.56		
\$153	W18x35	- 4	35	16	5040	2.52	\$54.65	\$7,869.60	1	
\$153	L4x4x3/8	12		18.238			\$40.80	\$8,929.32		
5153	W24x55	6	55	36	11880	5.94	\$80.03	\$17,286.48		
5154	W12x14	23	14	13	4186	2.093	\$25.21	\$7,537.79		
\$154	W12x26	13	26	13	4394	2.197	\$41.06	\$6,939.14		
5154	W12×26	2	26	25.583	1330.316	0.665158	\$41.06	\$2,100.88		
5154	W21s44	4	44	25.583	4502.606	2.251304	\$65.86	\$6,739.59		
5154	W18s40	3	40	38.667	4640.04	2.32002	\$61.15	\$7,093.46	1	
\$154	W24x55	3	55	38.667	6380.055	3.1900275	\$80.03	\$9,283.56		
5154	W18x35	6	35	36	7560	3.78	\$54.65		1	
5154	W24x55	6	55	36	11880	5.94	\$80.03	\$17,286.48		4
5154	L4s4s3/8	12	-	18.236			\$40.80	\$8,929.32	TOTAL	\$287,611.5
5307 - V	W8x35	2	35	8.333	583.31	0.291655	\$56.98	\$949.63		
5307 - V	W8x35	2	35	11.177	782.39	0.391195	\$56.98	\$1,273.73		ge
5307 - V	W8x35	2	35	13.167	921.69	0.460845	\$56.98	\$1,500.51	VERTICALS	BARRELL
5307 - V	W8x35	2	35	14.375	1006.25	0.503125	\$56.98	\$1,638.18		13.8
5307 - V	W8x35	1	35	14.771	516.985	0.2584925	\$56.98	\$841.65		- 5
5307 - D	W8x35	2	35	13.792	965.44	0.48272	\$56.98	\$1,571.74		TRUSS
5307 - D 5307 - D	W8x35 W8x35	2 2	35 35	15.417	1079.19	0.539595	\$56.98 \$56.98	\$1,756.92	DIAGONALS	
		_		17.146	1200.22	0.60011	556.98	\$1,953.96		₹
5307 - D 5307 - D	W8x35	2 2	35 35	18.51	1295.7	0.64785	\$56.98	\$2,109.40		тека
5307 - D 5307 - T	W8x35			19.375	1356.25	0.678125	\$56.98	\$2,207.98		
5307 - B	W14x145 W14x120	1 2	145 120	159.706 45.5	23157.66 10920	11.57883 5.46	\$201.50 \$167.99	\$32,181.16	TOP & BOTTOM CHORD	
5307 - B	W14x120 W14x120	1	120	65	7800	3.9	\$167.99	\$10,919.35	pen rauss	\$74,191.2
	11370320	1	120	40	7000	1.9	9401-39	200,717.33	QUANTITY	919,694.6
									TOTAL	\$519,339.0
5306 - V	W8x35		35	8,333	583.31	0.291655	\$56.98	\$949.63	TOTAL	2019,339.0
5306 - V		2	35	11.177	782.39	0.391195				
5306 - V		2 2	35	13.167	782.39 921.69	0.391195				
5306 - V		2	35	14.375	1006.25	0.503125				2
5306 - V		1	35	14.771	516.985	0.2584925	\$56.98	\$841.65		BARRELL
5306 - D		2	35	13.792	965.44		556.98	\$1,571.74		- E
5306 - D		2	35	15.417	1079.19	0.48272				TRUSS
5306 - D		2	35	17.146	1200.22	0.60011				
5306 - D		2	35	18.51	1295.7	0.64785				(GMG)
5306 - D		2	35	19.375	1356.25	0.678125	\$56.98			. 5
	W14x176			159,706						
	W36x210	1 2	176 210	45.5	28108.608 19110	14.054304 9.555	\$243.05 \$285.85			
	W36x210	1	210	65	13650	6.825				\$99,213.3
	11300240	1	220	- 00	19030	0.823	4463.63	210,390.23	QUANTITY	407,616.8
										600 212 2
SINCLINA	IS OVERHEAD & PROFIT IN	ESTIMATE		-	TOTAL WEIGHT (TONS)	298,356402		ONS	GRAND TOTAL	\$99,213.3 \$906,163.9
-MODULE	a sterinens a restil in	- CATHONIE		ļ	rows merent (roma)	*10.33040Z		u/lie		
									Square Footage	35,881.53
									S/SF	\$24.57

Table 65: Boston University Case Study - Truss System Estimate

AGGANIS ARENA, BOSTON UNIVERSITY - CASE STUDY #2

			High Roof Fram	ing System Ta	ke-Off & Cost Estimate			
	Structural Member	Quantity		Length (ft)	Total Weight (lb)	Total Weight (tons)	Cost/ft.	Cost
17	HSS12×12×1/2 (16'-0")	2.34375	0	37.5	0	0	\$1,755.50	\$4,114.45
117	HSS12x12x1/2 (16'-0")	2.1875	0	35	0	0	\$1,755.50	\$3,840.16
117	HSS12x12x1/2 (16'-0")	2.5	0	40	0	0	\$1,755.50	\$4,388.75
117	HSS12x12x1/2 (16:-0*)	2.5	0	40	0	0	\$1,755.50	\$4,388.75
117	HSS12×12×1/2 (16'-0")	2.1875	0	35	0	0	\$1,755.50	\$3,840.36
117	HSS12×12×1/2 (16:-0*)	2.34375	0	37.5	0	0	\$1,755.50	\$4,114.45
117	HSS12×12×5/8 (16'-0")	2.5	0	40	0	0	\$1,755.50	\$4,388.75
U17 U17	HSS12x12x1/2 (16:-0*)	1.40625	0	22.5	0 364	0.182	\$1,755.50	\$2,468.67
1117	W12>26 HSS12>12>5/8 (16'-0")	2.1875	26 0	35	0	0.182	\$41.06 \$1,755.50	\$574.84 \$3,840.16
117	HSS12×12×3/8 (16'-0")	1.875	ő	30	ő	0	\$1,755.50	\$3,291.56
A117	HSS12×12×3/8 (16'-0")	1.5625	ō	25	ō	o o	\$1,755.50	\$2,742.90
A117	HSS12×12×3/8 (16'-0")	1.5625	0	25	0	ò	\$1,755.50	\$2,742.93
A117	HSS12×12×1/2 (16'-0")	2.0625	ō	33	ō	0	\$1,755.50	\$3,620.7
1117	HSS12×12×3/8 (16'-0")	1.75	0	28	0	Ó	\$1,755.50	\$3,072.11
A117	HSS12×12×3/8 (16'-0")	1.75	0	28	0	0	\$1,755.50	\$3,072.11
A117	HSS12x12x1/2 (16'-0")	2.5	0	40	0	0	\$1,755.50	\$4,388.75
A117	HSS3x3x3/8 (12'-0")	1.75	0	21	0	0	\$216.00	\$378.00
A117	HSS3x3x3/8 (12'-0")	1.75	0	21	0	0	\$216.00	\$378.00
A117	W14x30	26	30	20	15600	7.8	\$46.42	\$24,138.40
A117	HSS8x8x3/8 (14'-0")	24	0	336	0	0	\$825.50	\$19,812.00
A117	W18x50	1	50	40	2000	1	\$75.05	\$3,002.00
A117	W18x71	2	71	28	3976	1.988	\$108.09	\$5,773.04
117	W18x50	1	50	28	1400	0.7	\$75.05	\$2,101.40
1117	W18x76	2	76	34	5168	2.584	\$109.68	\$7,458.2
1117	W18x50	1	50	34	1700	0.85	\$75.05	\$2,551.70
117	W18x76	2	76	40	6090	3.04	\$109.68	\$8,774.40
U17 U17	W14x30	1	30	20	600	0.3	\$46.42	5928.40
	HSS12×12×3/8 (16'-0")	3.5	0	56	0	0	\$1,755.50	\$6,144.25
A117 A117	HSS12x6x3/8 (16*-0*)	2.5 3.5	0	40 56	0	0	\$1,420.50	\$3,551.25 \$6,144.25
A117	HSS12x12x3/8 (16:-0*) HSS12x12x1/2 (16:-0*)	2.5	ő	40	ő	0	\$1,755.50	\$4,388.75
1117	HSS12×12×3/8 (16'-0")	3.125	ő	50	ő	0	\$1,755.50	\$5,485.94
A117	HSS12×12×1/2 (16'-0")	2.125	0	34	0	0	\$1,755.50	\$3,730.44
117	HSS12×12×5/8 (16'-0")	2.1875	ō	15	ō	0	\$1,755.50	\$3,840.16
117	HSS12×12×3/8 (16'-0")	1.75	0	28	0	ò	\$1,755.50	\$3,072.11
A117	HSS12×12×1/2 (16'-0")	1.4375	0	23	0	0	\$1,755.50	\$2,523.53
A117	HSS12×12×5/8 (16'-0")	2.5	0	40	0	0	\$1,755.50	\$4,388.75
A117	HSS12x12x1/2 (16'-0")	4.6875	0	75	0	0	\$1,755.50	\$8,226.90
A117	HSS12x12x1/2 (16'-0")	4.375	0	70	0	0	\$1,755.50	\$7,680.33
1117	HSS12×12×1/2 (16:-0*)	5	0	80	0	0	\$1,755.50	\$8,777.50
A117	W18x50	2	50	28	2800	1.4	\$75.05	\$4,202.80
117	W18x50	2	50	34	3400	1.7	\$75.05	\$5,103.40
A117	W18x76	2	76	40	6090	3.04	\$109.68	\$8,774.40
A117	W14x30	1	30	20	600	0.3	\$46.42	\$928.40
A117	W14x30	12	30	20	7200	3.6	\$46.42	\$11,140.80
A117	W18x76	2	76	40	6000	3.04	\$109.68	\$8,774.40
A117	HSS8×8×3/8 (14'-0") W18×50	18.85714	0 50	264 40	0 2000	0	\$825.50	\$15,566.57
A117 A117	W18850 HSS12x12x5/8 (16'-0")	1 5	90	40 80	2000	0	\$75.05 \$1,755.50	\$8,777.50
A117	HSS12x12x5/8 (16'-0")	2.8125		45	0	0		
M17 M17	HSS12x12x5/8 (16-0*)	4.375	0	70	0	0	\$1,755.50	\$4,937.34 \$7,680.33
A117	HSS12×12×3/8 (16'-0")	3.5	0	56	ő	0	\$1,755.50	\$6,144.25
A117	HSS12×12×3/8 (16'-0")	3.125	ő	50	ő	0	\$1,755.50	\$5,485.94
A117	HSS12×12×1/2 (16'-0")	2.125	ő	34	o o	0	\$1,755.50	\$3,730.44
A117	HSS12×12×3/8 (16'-0")	15	ő	240	ő	0	\$1,755.50	\$26,332.50
A117	HSS12×12×1/2 (16'-0")	10	ő	160	o o	o	\$1,755.50	\$17,555.00
A117	HSS12×12×3/8 (16'-0")	3.125	0	50	0	ō	\$1,755.50	\$5,485.94
117	HSS12x12x1/2 (16'-0")	2.125	0	34	0	Ó	\$1,755.50	\$3,730.44

 ${\bf Jeremy\ Heilman\ |\ Josh\ Progar\ |\ Nico\ Pugilese\ |\ James\ Rodgers}$

SA118	W14x22	2	22	6	264	0.132	\$34.24	\$410.88	
SA118	W16x26	1	26	27	702	0.351	\$40.27	\$1,067.29	
SA118	W16x26 W16x40	2	26	33	1716	0.858	\$40.27	\$2,657.82	
5A118 5A118	W16s40 W21x50	6	40 50	37 40	2960 12000	1.48	\$60.20 \$73.86	\$4,454.80 \$17,726.40	
SA118	W21850 W14s22	1	22	27	12000 594	0.297	\$73.80 \$34.24	\$924.48	
A118	W16s45	2	45	28	2520	1.26	566.95	\$3,749.20	
5A118	W10x12	a a	12	12	576	0.288	\$25.57	51,227.36	
5A118	W10x12	14	12	10	1600	0.84	\$25.57	\$3,579.80	
A118	HSS6+6+3/8 (12'-0")	18.33333	0	220	0	0	\$432.00	\$7,920.00	
A118	401/109	2	20	21	840	0.42	\$22.92	\$962.64	
A118	W24s68	3	63	28	5712	2.856	\$97.53	\$8,192.52	
A118	40UI09	2	20	28	1120	0.56	\$22.92	\$1,283.52	
5A118	40U(13	2	0	28	0	0	\$31.14	\$1,743.84	
5A118	40U/11	2	0	28	0	0	\$25.66	\$1,436.96	
A118 A118	40UID8 40UID9	6 8	20	32.5	0 5200	2.6	\$22.92 \$22.92	\$3,850.56 \$5,959.20	
A118	40U(13	1	0	32.5	0	0	\$31.14	\$1,012.05	
A118	40U(12	4	ō	32.5	0	o o	\$28.40	\$3,692.00	
A118	40U(11	1	0	32.5	0	o	\$25.66	\$833.95	
A118	W27x84	2	84	32.5	5460	2.73	\$118.56	\$7,706.40	
A118	W30x99	1	99	32.5	3217.5	1.60875	\$138.51	\$4,501.58	
A118	40U(12	3	0	40	0	0	\$28.40	\$3,406.00	
A118	40U/13	1	0	40	0	0	\$31.14	\$1,245.60	
5A118	40U(10	2	0	40	0	0	\$22.92	\$1,833.60	
A118	40U(11	4	0	40	0	0	\$25.66	\$4,105.60	
A118	40U(15	2	0	40	0	0	\$36.62	\$2,929.60	
5A118	40U(14	2 2	122	40 40	10060	5.28	\$33.88	\$2,710.40 \$14,616.80	
A118 A118	W30x132 W33x152	1	132 152	40	10560 6090	5.28 3.04	\$182.71 \$209.51	\$8,380.40	
A118	40U(13	3	0	40	0	0	\$31.14	\$3,736.80	
A118	400/14	1	o	40	ō	0	\$33.88	\$1,355.20	
A118	40U(10	2	ō	40	ő	0	\$22.92	\$1,833.60	STIN
A118	40UH11	2	0	40	0	0	\$25.66	\$2,052.80	4
A118	44UH16	1	0	40	0	0	\$42.12	\$1,684.80	DMC
A118	52DUH17	1	0	40	0	0	\$47.98	\$1,919.20	UDA ENTARY FR
A118	44U(15	1	0	40	0	0	\$42.12	\$1,684.80	7, 100
A118	40U/16 W24x55	1 2	0	40 40	0 4400	0	\$36.62	\$1,464.80	3
A118 A118	W24x55 W27x84	2 2	55 84	40	6720	2.2 3.36	\$80.03 \$118.56	\$6,402.40 \$9,484.80	AM ING
A118	W30x90	1	90	40	3600	1.8	\$132.83	\$5,313.20	
A118	W10x12	4	12	7	336	0.163	\$25.57	\$715.96	
A118	40U(13	3	0	40	0	0.200	\$31.14	\$3,736.80	MEM BEES
A118	40UH14	2	0	40	0	Ó	\$33.88	\$2,710.40	55
A118	40UH12	3	0	40	0	0	\$28.40	\$3,406.00	
A118	40U/11	3	0	40	0	0	\$25.66	\$3,079.20	-High
A118	40U/16	1	0	40	0	0	\$36.62	\$1,464.80	
A118	44UH17	1	0	40	0	0	\$45.82	\$1,832.80	9
A118	40U/15	1	0	40	0	0	\$36.62	\$1,464.80	ROOFWYE
A118	W30x348	1	0	40	0	0	\$203.71	\$8,148.40 \$7,706.00	þ
A118 A118	W33x141 W33x152	1	0	40 40	0	0	\$194.90 \$209.51	\$7,796.00 \$8,380.40	
A118	40U(10	2	0	34	0	0	\$22.92	\$1,558.56	
A118	40U(13	1	0	34	o o	0	\$31.14	\$1,058.76	
A118	40U/12	i i	ō	34	ő	0	\$28.40	\$3,862.40	
A118	40UI9	4	0	34	ō	Ô	\$22.92	\$3,117.12	
A118	40U/11	2	0	34	0	0	\$25.66	\$1,744.88	
A118	40UH14	1	0	34	0	0	\$33.88	\$1,151.92	
A118	W27x84	2	84	34	5712	2.856	\$118.56	\$8,062.08	
A118	W27x94	1	94	34	3196	1.593	\$131.56	\$4,473.04	
A118	40U(10	1	0	21	0	0	\$22.92	\$481.32	
A118 A118	40U/10 40U/13	9 2	0	28 28	0	0	\$22.92 \$31.14	\$5,775.84 \$1,743.84	
A118 A118	40U(13 40U(12	1	0	28 28	0	O O	\$31.14 \$28.40	\$1,743.84 \$795.20	
A118	40U(12	1	o	21	0	0	\$28.40	\$596.40	
A118	W24x76	1	76	28	2128	1.064	\$106.03	\$3,024.84	
A118	W24x68	1	63	28	1904	0.952	\$97.53	\$2,730.84	
A118	W24x84	1	84	28	2352	1.176	\$119.23	\$3,336.44	
A118	W14x22	2	22	6	264	0.132	\$34.24	\$410.88	
A118	W16x31	1	31	27.5	852.5	0.42625	\$47.92	\$1,317.80	
A118	W16x31	1	31	33	1023	0.5115	\$47.92	\$1,581.36	
A118	W16x57	1	57	37	2109	1.0545	\$83.14	\$3,076.18	
5A118	W21x68	1	65	40	2720	1.36	\$98.05	\$3,922.00	
SA118	W21x62	1	62	40	2480	1.24	\$90.05	\$3,602.00	
SA118 SA118	W21x57	4	57 50	40 37	9120	4.56 0.925	\$83.30	\$13,328.00 \$2,726.90	
SA118 SA118	W16x50 W16x36	1	36	33	1850 1188	0.525	\$73.70 \$54.74	\$1,806.42	
SA118	W14x22	i	22	27.5	605	0.3025	\$34.24	\$941.60	
SA118	W16x45	2	45	27.5	2475	1.2375	\$66.95	\$3,682.25	
SA118	W10x12	4	12	12	576	0.288	\$25.57	\$1,227.36	
5A118	W10x12	14	12	7	1176	0.588	\$25.57	\$2,505.86	
SA118	HSS6×6×3/8 (12'-0")	18.33333	0	220	0	0	\$432.00	\$7,920.00	

${\bf Jeremy\ Heilman\ |\ Josh\ Progar\ |\ Nico\ Pugilese\ |\ James\ Rodgers}$

TRUSS 1	W14x90	1	90	175	15750	7.875	\$127.78	\$22,361.50		
TRUSS 1	W14x90	2	90	12.5	2250	1.125	\$127.78	\$3,194.50		
TRUSS 1	W12540	2	40	13	1040	0.52	\$60.49	\$1,572.74		
TRUSS 1	W12x40	2	40	17.5	1400	0.7	\$60.49	\$2,117.15		
TRUSS 1	W12s40	2	40	21	1690	0.84	\$60.49	\$2,540.58		.
TRUSS 1	W12s40 W12s40	2	40	24 25	1920 1000	0.95	\$60.49 \$60.49	\$2,908.52 \$1,512.25		12
TRUSS 1	W14x176	2	176	55	19360	9.63	\$243.05	\$26,735.50		TRUKS 21
TRUSS 1	W14x145	1	145	90	13050	6.525	\$201.50	\$18,135.00		22
TRUSS 1	W12x40	2	40	15	1200	0.6	\$60.49	\$1,814.70		
TRUSS 1	W12x106	2	106	27.5	5830	2.915	\$150.37	\$8,270.35		
TRUSS 1	W12s40 W12s40	2 2	40 40	28 30	2240 2400	1.12 1.2	\$60.49 \$60.49	\$3,387.44 \$3,629.40		
	W12540	2	40	32.5	2600	1.3	\$60.49	\$3,931.85		
									PER TRUSS	\$102,106.48
									QUANTITY	1
TOUET 2	1812-20		02	200	16000	2.0	£137.63	633.634.60	TOTAL	\$102,106.48
TRUSS 2 TRUSS 2	W14x99 W14x99	2	99 99	200 8	19800 1584	9.9 0.792	\$137.87 \$137.87	\$27,574.00		
TRUSS 2	W12x40	2	40	13	1040	0.52	\$60.49	\$1,572.74		
TRUSS 2	W12x40	2	40	17.5	1400	0.7	\$60.49	\$2,117.15		
TRUSS 2	W12540	2	40	22.5	1800	0.9	\$60.49	\$2,722.05		
TRUSS 2	W12540	2	40	23	1840	0.92	\$60.49	\$2,782.54		1
TRUSS 2 TRUSS 2	W12s40 W14s176	2	40 176	24 62.25	960 21912	0.48 10.956	\$60.49 \$243.05	\$1,451.76 \$30,259.73		TRUSS
TRUSS 2	W14x159	î	159	78.66	12506.94	6.25347	\$220.26	\$17,325.65		25
TRUSS 2	W12x58	2	58	20	2320	1.16	\$84.70	\$3,388.00		
TRUSS 2	W12x72	2	72	28	4032	2.016	\$105.04	\$5,882.24		
TRUSS 2 TRUSS 2	W12540 W12540	2 2	40 40	27.5 30	2200 2400	1.1 1.2	\$60.49 \$60.49	\$3,326.95 \$3,629.40		
	W12s40 W12s40	2	40	32.5	2600	13	\$60.49	\$3,931.85		
									PER TRUSS	\$108,169.98
									QUANTITY	1
TOUGH 1	1111.6-00		0.1	202.5	202424	10.02121	6111111	233 A16 40	TOTAL	\$108,169.98
TRUSS 3 TRUSS 3	W14x99 W14x99	2	99 99	7.5	20047.5 1485	10.02375 0.7425	\$137.87 \$137.87	\$27,918.68 \$2,068.05		
TRUSS 3	W12x40	2	40	13	1040	0.52	\$60.49	\$1,572.74		
TRUSS 3	W12x40	2	40	17.5	1400	0.7	\$60.49	\$2,117.15		
TRUSS 3	W12s40	2	40	22.5	1800	0.9	\$60.49	\$2,722.05		.
TRUSS 3 TRUSS 3	W12s40 W12s40	2	40 40	23 24	1840 960	0.92	\$60.49 \$60.49	\$2,782.54 \$1,451.76		12
TRUSS 3	W14x193	2	193	64.71	24978.06	12.48903	\$351.45	\$45,484.66		TRUKS
TRUSS 3	W14x176	1	176	78.66	13844.16	6.92208	\$243.05	\$19,118.31		8
TRUSS 3	W12x72	2	72	22.5	3240	1.62	\$105.04	\$4,726.80		
TRUSS 3	W12x72	2	72	28	4032	2.016	\$105.04	\$5,882.24		
TRUSS 3 TRUSS 3	W12540 W12540	2 2	40 40	28 30	2240 2400	1.12 1.2	\$60.49 \$60.49	\$3,387.44 \$3,629.40		
TRUSS 3	W12x40	2	40	32.5	2600	1.3	\$60.49	\$3,931.85		
									PER TRUSS	\$126,793.67
									CHANTITY TOTAL	\$126,790.67
TRUSS 4	W14x132	1	132	202.5	26730	13.365	\$181.94	\$36,842.85	IOIAL	\$660,130.00
TRUSS 4	W14x132	2	132	7.5	1980	0.99	\$181.94	\$2,729.10		
TRUSS 4	W12s40	2	40	13	1040	0.52	\$60.49	\$1,572.74		
TRUSS 4	W12s40 W12s40	2 2	40 40	17.5 22.5	1400 1800	0.7	\$60.49 \$60.49	\$2,117.15 \$2,722.05		
TRUSS 4	W12s40	2	40	22.5	1840	0.92	\$60.49	\$2,722.05 \$2,782.54		} _ I
TRUSS 4	W12>40	1	40	24	960	0.48	\$60.49	\$1,451.76		TRUSS DA
TRUSS 4	W14x233	2	233	64.71	30154.86	15.07743	\$319.45	\$41,343.22		8
TRUSS 4	W14x211	1	211	78.66	16597.26	8.29863	\$289.98	\$22,805.89		*
TRUSS-4	W12x87	2	87 95	22.5	3915 5336	1.9575	\$125.04	\$5,626.80 \$7,674.34		
	W12x96 W12x40	2 2	40	28 28	5376 2240	2.688 1.12	\$60.49	\$7,674.24 \$3,387.44		
TRUSS-4	W12>40	2	40	30	2400	1.2	\$60.49	\$3,629.40		
TRUSS 4	W12>40	2	40	32.5	2600	1.3	\$60.49	\$3,931.85		
									PER TRUSS	\$138,617.03
									OMANTITY TOTAL	\$138,617.03
						12.566	£2.55 0.4	\$36,842.85		
TRUSS S	W14s132	1	132	202.5	26730	13.365	\$181.94	den and a second		
TRUSS S	W14x132	1 2	132	7.5	1980	0.99	\$181.94	\$2,729.10		
TRUSS S TRUSS S	W14x132 W12x40	2 2	132 40	7.5 13	1980 1040	0.99 0.52	\$181.94 \$60.49	\$2,729.10 \$1,572.74		
TRUSS S TRUSS S TRUSS S	W14s132 W12s40 W12s40	2 2 2	132 40 40	7.5 13 17.5	1980 1040 1400	0.99 0.52 0.7	\$181.94 \$60.49 \$60.49	\$2,729.10 \$1,572.74 \$2,117.15		
TRUSS S TRUSS S TRUSS S TRUSS S	W14x132 W12x40	2 2 2 2	132 40	7.5 13	1980 1040	0.99 0.52	\$181.94 \$60.49 \$60.49 \$60.49	\$2,729.10 \$1,572.74 \$2,117.15 \$2,722.05		
TRUSS S TRUSS S TRUSS S TRUSS S TRUSS S TRUSS S	W14s132 W12s40 W12s40 W12s40 W12s40 W12s40	2 2 2	132 40 40 40	7.5 13 17.5 22.5	1980 1040 1400 1800 1840 980	0.99 0.52 0.7 0.9	\$181.94 \$60.49 \$60.49	\$2,729.10 \$1,572.74 \$2,117.15		TRUE
TRUSS S TRUSS S TRUSS S TRUSS S TRUSS S TRUSS S TRUSS S	W14x132 W12x40 W12x40 W12x40 W12x40 W12x40 W12x40 W14x176	2 2 2 2 2 1 2	40 40 40 40 40 40 176	7.5 13 17.5 22.5 23 24 64.71	1980 1040 1400 1800 1840 960 22777.92	0.93 0.52 0.7 0.9 0.92 0.48 11.18896	\$181.94 \$60.49 \$60.49 \$60.49 \$60.49 \$60.49 \$319.45	\$2,729.30 \$1,572.74 \$2,117.15 \$2,722.05 \$2,782.54 \$1,451.76 \$41,343.22		TRUSS &
TRUSS S	W14x132 W12x40 W12x40 W12x40 W12x40 W12x40 W14x176 W14x176 W14x211	2 2 2 2 2 1 2	40 40 40 40 40 40 176 211	7.5 13 17.5 22.5 23 24 64.71 78.66	1980 1040 1400 1800 1840 960 22777.92 16597.26	0.99 0.52 0.7 0.9 0.92 0.48 11.38896 8.29863	\$181.94 \$60.49 \$60.49 \$60.49 \$60.49 \$60.49 \$319.45 \$289.93	\$2,729.30 \$1,572.74 \$2,117.15 \$2,722.05 \$2,782.54 \$1,451.76 \$41,343.22 \$22,805.89		TR-USS-25
TRUSS S	W14s132 W12s40 W12s40 W12s40 W12s40 W12s40 W14s176 W14s211 W12s67	2 2 2 2 2 1 2 1 2	40 40 40 40 40 40 176 211 87	7.5 13 17.5 22.5 23 24 64.71 78.66 22.5	1980 1040 1400 1800 1840 960 22777.92 16597.26	0.99 0.52 0.7 0.9 0.92 0.48 11.38996 8.29863	\$181.94 \$60.49 \$60.49 \$60.49 \$60.49 \$60.49 \$119.45 \$289.93 \$125.04	\$2,729.30 \$1,572.74 \$2,117.15 \$2,722.05 \$2,782.54 \$1,451.76 \$41,343.22 \$22,805.89 \$5,626.80		TRUSS #5
TRUSS S	W14x132 W12x40 W12x40 W12x40 W12x40 W12x40 W14x176 W14x176 W14x211	2 2 2 2 2 1 2	40 40 40 40 40 40 176 211	7.5 13 17.5 22.5 23 24 64.71 78.66	1980 1040 1400 1800 1840 960 22777.92 16597.26	0.99 0.52 0.7 0.9 0.92 0.48 11.38896 8.29863	\$181.94 \$60.49 \$60.49 \$60.49 \$60.49 \$60.49 \$319.45 \$289.93	\$2,729.30 \$1,572.74 \$2,117.15 \$2,722.05 \$2,782.54 \$1,451.76 \$41,343.22 \$22,805.89		TRUSS.#5
TRUSS S	W14s132 W12s40 W12s40 W12s40 W12s40 W12s40 W14s176 W14s211 W12s67 W12s67 W12s60 W12s40 W12s40	2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	132 40 40 40 40 40 176 211 87 96 40 40	7.5 13 17.5 22.5 23 24 64.71 78.66 22.5 28 30	1980 1040 1400 1800 1840 950 22777.92 16597.26 2915 5376 2240	0.99 0.52 0.7 0.9 0.92 0.48 11.38996 8.29963 1.9575 2.688 1.12	\$181.94 \$60.49 \$60.49 \$60.49 \$60.49 \$319.45 \$289.93 \$125.04 \$137.04 \$60.49	\$2,729.30 \$1,572.74 \$2,137.35 \$2,722.05 \$2,782.54 \$1,451.76 \$41,343.22 \$22,805.89 \$5,626.80 \$7,674.34 \$3,387.44 \$3,629.40		TRUSS #5
TRUSS S	W14s132 W12s40 W12s40 W12s40 W12s40 W12s40 W14s176 W14s211 W12s67 W12s66 W12s40	2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2	132 40 40 40 40 40 176 211 87 96 40	7.5 13 17.5 22.5 23 24 64.71 78.66 22.5 28	1980 1040 1400 1800 1840 960 22777.92 16597.26 3915 5376 2240	0.99 0.52 0.7 0.9 0.92 0.48 11.36896 8.2986 1.9575 2.683	\$181.94 \$60.49 \$60.49 \$60.49 \$60.49 \$339.45 \$289.93 \$125.04 \$60.49	\$2,729.30 \$1,572.74 \$2,137.35 \$2,722.05 \$2,782.54 \$1,451.76 \$41,343.22 \$22,805.89 \$5,636.80 \$7,674.24 \$3,387.44		
TRUSS S	W14s132 W12s40 W12s40 W12s40 W12s40 W12s40 W14s176 W14s211 W12s67 W12s67 W12s60 W12s40 W12s40	2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	132 40 40 40 40 40 176 211 87 96 40 40	7.5 13 17.5 22.5 23 24 64.71 78.66 22.5 28 30	1980 1040 1400 1800 1840 950 22777.92 16597.26 2915 5376 2240	0.99 0.52 0.7 0.9 0.92 0.48 11.38996 8.29963 1.9575 2.688 1.12	\$181.94 \$60.49 \$60.49 \$60.49 \$60.49 \$319.45 \$289.93 \$125.04 \$137.04 \$60.49	\$2,729.30 \$1,572.74 \$2,137.35 \$2,722.05 \$2,782.54 \$1,451.76 \$41,343.22 \$22,805.89 \$5,626.80 \$7,674.34 \$3,387.44 \$3,629.40	PER TRUSS	3000 85 85 \$138,617.00
TRUSS S	W14s132 W12s40 W12s40 W12s40 W12s40 W12s40 W14s176 W14s211 W12s67 W12s67 W12s60 W12s40 W12s40	2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	132 40 40 40 40 40 176 211 87 96 40 40	7.5 13 17.5 22.5 23 24 64.71 78.66 22.5 28 30	1980 1040 1400 1800 1840 950 22777.92 16597.26 2915 5376 2240	0.99 0.52 0.7 0.9 0.92 0.48 11.38996 8.29963 1.9575 2.688 1.12	\$181.94 \$60.49 \$60.49 \$60.49 \$60.49 \$319.45 \$289.93 \$125.04 \$137.04 \$60.49	\$2,729.30 \$1,572.74 \$2,137.35 \$2,722.05 \$2,782.54 \$1,451.76 \$41,343.22 \$22,805.89 \$5,626.80 \$7,674.34 \$3,387.44 \$3,629.40	PER TRUSS QUANTITY TOTAL	

BIM THESIS PROPOSAL

HPR Integrated Design

 ${\bf Jeremy\ Heilman\ |\ Josh\ Progar\ |\ Nico\ Pugilese\ |\ James\ Rodgers}$

TRUSS-6	W14x90	1	90	202.5	18225	9.1125	\$127.78	\$25,875.45		Г
TRUSS-6	W14x99	2	99	7.5	1485	0.7425	\$137.87	\$2,068.05		l I
										l I
TRUSS 6	W12>40	2	40	13	1040	0.52	\$60.49	\$1,572.74		l I
TRUSS 6	W12540	2	40	17.5	1400	0.7	\$60.49	\$2,117.15		l I
TRUSS-6	W12×40	2	40	22.5	1800	0.9	\$60.49	\$2,722.05		
TRUSS 6	W12s40	2	40	23	1840	0.92	\$60.49	\$2,782.54		T _ I
TRUSS 6	W12>40	1	40	24	960	0.48	\$60.49	\$1,451.76		TRUSS 26
TRUSS 6	W14x176	2	176	64.71	22777.92	11.38896	\$243.05	\$31,455.53		- Z
									1	ž.
TRUSS-6	W14x159	1	159	78.66	12506.94	6.25347	\$220.26	\$17,325.65	1	
TRUSS-6	W12x72	2	72	22.5	3240	1.62	\$105.04	\$4,726.80		
TRUSS-6	W12565	2	65	28	3640	1.82	\$93.94	\$5,260.64		1
TRUSS 6	W12>40	2	40	28	2240	1.12	\$60.49	\$3,387.44		l 1
				30						l 1
TRUSS 6	W12>40	2	40		2400	1.2	\$60.49	\$3,629.40	1	l 1
TRUSS-6	W12>40	2	40	32.5	2600	1.3	\$60.49	\$3,931.85		
									PER TRUSS	\$108,307.05
									QUANTITY	1
									TOTAL	\$108,307.05
Widow Color Co.	1111 5-00			240	10000		4.22.22	*******		7000000000
TRUSS 7	W14x90	1	90	200	18000	9	\$127.78	\$25,556.00	1	l 1
TRUSS 7	W14x90	2	90		1440	0.72	\$127.78	\$2,044.48		l 1
TRUSS 7	W12>40	2	40	13	1040	0.52	\$60.49	\$1,572.74		l 1
TRUSS 7	W12>40	2	40	17.5	1400	0.7	\$60.49	\$2,117.15		l 1
TRUSS 7	W12>40	2	40	22.5	1800	0.9	\$60.49	\$2,722.05		l 1
TRUSS 7	W12540	2	40	23	1840	0.92	\$60.49	\$2,782.54		† . I
										YRUSS
TRUSS 7	W12>40	1	40	24	960	0.48	\$60.49	\$1,451.76		5
TRUSS 7	W14x159	2	159	62.25	19795.5	9.89775	\$230.36	\$27,422.37	1	05 84
TRUSS 7	W14x132	1	132	78.66	10383.12	5.19156	\$181.94	\$14,311.40	1	8
TRUSS 7	W12x50	2	50	20	2000	1	\$74.20	\$2,968.00	1	
TRUSS 7	W12565	2	65	28	3640	1.82	\$94.87	\$5,312.72		1 1
TRUSS 7	W12>40	2	40	27.5	2200	1.1	\$60.49	\$3,326.95	1	
TRUSS 7	W12540	2	40	30	2400	1.2	\$60.49	\$3,629.40	1	
TRUSS 7	W12×40	2	40	32.5	2600	1.3	\$60.49	\$3,931.85		
									PER TRUSS	\$99,149.41
									QUANTITY	900,010114
										*
									TOTAL	\$99,149.41
TRUSS 8	W14x90	1	90	175	15750	7.875	\$127.78	\$22,361.50		
TRUSS 8	W14x90	2	90	12.5	2250	1.125	\$127.78	\$3,194.50		
TRUSS 8	W12>40	,	40	13	1040	0.52	\$60.49	\$1,572.74		
		2	40		1400					
TRUSS 8	W12s40			17.5		0.7	\$60.49	\$2,117.15	1	l I
TRUSS 8	W12>40	2	40	21	1680	0.84	\$60.49	\$2,540.58		↓
TRUSS 8	W12>40	2	40	24	1920	0.95	\$60.49	\$2,908.52	1	_ =
TRUSS 8	W12540	1	40	25	1000	0.5	\$60.49	\$1,512.25		TRUKS #8
TRUSS 8	W14x159	2	159	55	17490	8.745	\$220.26	\$24,228.60		8 1
TRUSS 8	W14x132	1	132	90	11880	5.94	\$181.94	\$16,374.60	1	38
									1	l ' I
TRUSS 8	W12>40	2	40	15	1200	0.6	\$60.49	\$1,814.70		
TRUSS 8	W12x96	2	96	27.5	5280	2.64	\$137.04	\$7,537.20		1 1
TRUSS 6	W12>40	2	40	28	2240	1.12	\$60.49	\$3,387.44		
TRUSS 8	W12>40	2	40	30	2400	1.2	\$60.49	\$3,629.40		
TRUSS 8	W12540	2	40	32.5	2600	1.3	\$60.49	\$3,931.85		
111033 6	W12340		40	32.3	2000	***	process	20,700.00		400.000
									PER TRUSS	\$97,106.03
									QUANTITY	1
									TOTAL	\$97,106.03
TRUSS 9	W14-61	,	- 41	32.5	11005	E 0424	C22.53	£17.362.16		9713884188
	W14561	6	61		11895	5.9475	\$88.53	\$17,263.35	1	
TRUSS 9	W14x74	2	74	27.5	4070	2.035	\$106.12	\$5,836.60	1	
TRUSS 9	W14s61	2	61	27.5	3355	1.6775	\$88.53	\$4,869.15		
TRUSS 9	W14x74	2	74	32.5	4810	2.405	\$106.12	\$6,897.80		
TRUSS 9	W14x74	3	74	40	8890	4.44	\$106.12	\$12,734.40	1	ا ہا
TRUSS 9	W14x82	3	82	40	9840	4.92	\$116.95	\$14,014.00		TRUSS # 9
		2.438624								- 8 8
TRUSS 9	HSS8x8x3/8 (14'-0")	1.428571		20	0	0	\$825.50	\$1,179.29	1	16
TRUSS 9	HSS10x10x3/8 (16'-0")	3.214286		45	0	0	\$1,445.50	\$4,646.25	1	"
TRUSS 9	HSS10x10x3/8 (16'-0")	4.285714		60	0	0	\$1,445.50	\$6,195.00	1	
TRUSS 9	HSS10x10x3/8 (16'-0")	5		70	0	0	\$1,445.50	\$7,227.50		j l
TRUSS 9	HSS10x10x3/8 (16'-0")	7.428571		104	0	0	\$1,445.50	\$10,738.00		1 1
	HSS10x10x3/8 (16'-0")	12.85714		180	ő	0		\$18,585.00		
MO33 9	unanovarional a (noo.)	25/20/2/19		100	U	U	71,745.50	346,365.00		4
									PER TRUSS	\$110,206.34
									QUANTITY	1
									TOTAL	\$110,206.34
TRUSS 10	W14561	6	61	32.5	11895	5.9475	\$88.53	\$17,263.35		
TRUSS 10		2	74	27.5	4070	2.035	\$106.12	\$5,836.60		
				27.5	3355	1.6775	\$88.53	\$4,869.15		
	W14s61	2	61			2.405	\$106.12	\$6,897.80	1	
TRUSS 10 TRUSS 10	W14s61	2	61 74	32.5	4810	2-103				
	W14s61 W14s74				4810 8880	4.44	\$106.12	\$12,734.40		ا ہا
TRUSS 10 TRUSS 10	W14x61 W14x74 W14x74	2 3	74 74	32.5 40	8880	4.44				夏
TRUSS 10 TRUSS 10 TRUSS 10	W14x74 W14x74 W14x82	2 3 3	74	32.5 40 40	8890 9840	4.44 4.92	\$116.95	\$14,084.00		TRUSS
TRUSS 10 TRUSS 10 TRUSS 10 TRUSS 10	W14s61 W14s74 W14s74 W14s82 H558s8x3/6 (14'-0")	2 3 3 1.428571	74 74	32.5 40 40 20	8880 9840 0	4.44	\$116.95 \$825.50	\$14,084.00		TEL SSUBIT
TRUSS 10 TRUSS 10 TRUSS 10 TRUSS 10 TRUSS 10	W14x51 W14x74 W14x74 W14x82 H558x8x3/8 (14'-0") H5530x10x3/8 (16'-0")	2 3 3 1.428571 3.214286	74 74	32.5 40 40 20 45	8880 9840 0 0	4.44 4.92	\$136.95 \$825.50 \$1,445.50	\$14,084.00 \$1,179.29 \$4,646.25		THUSS 210
TRUSS 10 TRUSS 10 TRUSS 10 TRUSS 10 TRUSS 10	W14s61 W14s74 W14s74 W14s82 H558s8x3/6 (14'-0")	2 3 3 1.428571	74 74	32.5 40 40 20	8880 9840 0	4.44 4.92	\$116.95 \$825.50 \$1,445.50 \$1,445.50	\$14,084.00		TRUSS #10
TRUSS 10 TRUSS 10 TRUSS 10 TRUSS 10 TRUSS 10 TRUSS 10	W14x51 W14x74 W14x74 W14x82 W158x8x3/8 (14*-0*) H5530x10x3/8 (14*-0*) H5530x10x3/8 (14*-0*)	2 3 3 1.428571 3.214286	74 74	32.5 40 40 20 45	8880 9840 0 0	4.44 4.92	\$116.95 \$825.50 \$1,445.50 \$1,445.50	\$14,084.00 \$1,179.29 \$4,646.25 \$6,295.00		OT# SSORA.
TRUSS 10	W14s51 W14s74 W14s74 W14s52 W14s52 W15510s10s3/8 (14'-0") H5510s10s3/8 (16'-0") H5510s10s3/8 (16'-0")	2 3 3 1.428571 3.214286 4.285714 5	74 74	32.5 40 40 20 45 60 70	8880 9840 0 0 0	4.44 4.92 0 0 0	\$116.95 \$825.50 \$1,445.50 \$1,445.50 \$1,445.50	\$14,084.00 \$1,179.29 \$4,646.25 \$6,195.00 \$7,227.50		TRUSS 210
TRUSS 10	W14x51 W14x74 W14x52 W14x52 H550x10x3/8 (14*-0*) H5510x10x3/8 (16*-0*) H5510x10x3/8 (16*-0*) H5510x10x3/8 (16*-0*)	2 3 3 1.428571 3.214286 4.285714 5 7.428571	74 74	32.5 40 40 20 45 60 70	8890 9840 0 0 0	4.44 4.92 0 0	\$116.95 \$825.50 \$1,445.50 \$1,445.50 \$1,445.50 \$1,445.50	\$14,084.00 \$1,179.29 \$4,646.25 \$6,195.00 \$7,227.50 \$10,738.00		DEPRES STORY
TRUSS 10	W14s51 W14s74 W14s74 W14s52 W14s52 W15510s10s3/8 (14'-0") H5510s10s3/8 (16'-0") H5510s10s3/8 (16'-0")	2 3 3 1.428571 3.214286 4.285714 5	74 74	32.5 40 40 20 45 60 70	8880 9840 0 0 0	4.44 4.92 0 0 0	\$116.95 \$825.50 \$1,445.50 \$1,445.50 \$1,445.50	\$14,084.00 \$1,179.29 \$4,646.25 \$6,195.00 \$7,227.50		210
TRUSS 10	W14x51 W14x74 W14x52 W14x52 H550x10x3/8 (14*-0*) H5510x10x3/8 (16*-0*) H5510x10x3/8 (16*-0*) H5510x10x3/8 (16*-0*)	2 3 3 1.428571 3.214286 4.285714 5 7.428571	74 74	32.5 40 40 20 45 60 70	8890 9840 0 0 0	4.44 4.92 0 0 0	\$116.95 \$825.50 \$1,445.50 \$1,445.50 \$1,445.50 \$1,445.50	\$14,084.00 \$1,179.29 \$4,646.25 \$6,195.00 \$7,227.50 \$10,738.00	PER TRUSS	\$110,206.14
TRUSS 10	W14x51 W14x74 W14x52 W14x52 H550x10x3/8 (14*-0*) H5510x10x3/8 (16*-0*) H5510x10x3/8 (16*-0*) H5510x10x3/8 (16*-0*)	2 3 3 1.428571 3.214286 4.285714 5 7.428571	74 74	32.5 40 40 20 45 60 70	8890 9840 0 0 0	4.44 4.92 0 0 0	\$116.95 \$825.50 \$1,445.50 \$1,445.50 \$1,445.50 \$1,445.50	\$14,084.00 \$1,179.29 \$4,646.25 \$6,195.00 \$7,227.50 \$10,738.00		210
TRUSS 10	W14x51 W14x74 W14x52 W14x52 H550x10x3/8 (14*-0*) H5510x10x3/8 (16*-0*) H5510x10x3/8 (16*-0*) H5510x10x3/8 (16*-0*)	2 3 3 1.428571 3.214286 4.285714 5 7.428571	74 74	32.5 40 40 20 45 60 70	8890 9840 0 0 0	4.44 4.92 0 0 0	\$116.95 \$825.50 \$1,445.50 \$1,445.50 \$1,445.50 \$1,445.50	\$14,084.00 \$1,179.29 \$4,646.25 \$6,195.00 \$7,227.50 \$10,738.00	PER TRUSS QUANTITY	\$110,206.14
TRUSS 10	W14x51 W14x74 W14x52 W14x52 H550x10x3/8 (14*-0*) H5510x10x3/8 (16*-0*) H5510x10x3/8 (16*-0*) H5510x10x3/8 (16*-0*)	2 3 3 1.428571 3.214286 4.285714 5 7.428571	74 74	32.5 40 40 20 45 60 70	8890 9840 0 0 0	4.44 4.92 0 0 0	\$116.95 \$825.50 \$1,445.50 \$1,445.50 \$1,445.50 \$1,445.50	\$14,084.00 \$1,179.29 \$4,646.25 \$6,195.00 \$7,227.50 \$10,738.00	PER TRUSS	210

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

TRUSS 11	W21x50	1	50 32		0.8125	\$73.86	\$2,400.45		
TRUSS 11	HSS12x12x5/8 (16'-0")	2.03125	32	5 0	0	\$1,755.50	\$3,565.86		l
TRUSS 11	HSS10x10x3/8 (16'-0")	1.875		0 0	0	\$1,445.50	\$2,710.31		=
TRUSS 11	HSS8x8x3/8 (14'-0")	1.5		1 0	0	\$825.50	\$1,238.25		
TRUSS 11	HSS8x8x3/8 (14'-0")	1.607143	22	5 0	0	\$825.50	\$1,326.70		8
TRU55 12	W21x57	1	57 32	5 1852.5	0.92625	\$83.30	\$2,707.25		_
TRU55 12	HSS12x12x5/8 (16'-0")	2.03125	32	5 0	0	\$1,755.50	\$3,565.86		99
TRUSS 12	HSS10x10x3/8 (16'-0")	1.875		0 0	0	\$1,445.50	\$2,710.31		Ri
TRU55 12	HSS8x8x3/8 (14'-0")	1.5		1 0	0	\$825.50	\$1,238.25		l
TRU55 12	HSS8×8×3/8 (14'-0")	1.607143	22	5 0	0	\$825.50	\$1,326.70	1	l
								PER TRUSS	\$22,789.94
								QUANTITY	1
								TOTAL	\$22,789.94
TRUSS 13	W24x68	1	65 4	0 2720	1.36	\$97.53	\$3,901.20		-1
TRUSS 13	HSS12x12x5/8 (16'-0")	2.5	4	0 0	0	\$1,755.50	\$4,388.75		
TRUSS 13	HSS8x8x3/8 (14'-0")	4.285714		0 0	0	\$825.50	\$3,537.86		8
TRUSS 14	W24x94	1	94 -	0 3760	1.81	\$132.23	\$5,289.20		E .
TRUSS 14	HSS12x12x5/8 (16'-0")	2.5	4	0 0	0	\$1,755.50	\$4,388.75		20
TRUSS 14	HSS8x8x3/8 (14'-0")	4.285714		0 0	0	\$825.50	\$3,537.86		4
								PER TRUSS	\$25,043.61
								QUANTITY	1
								TOTAL	\$25,043.61
*INCLUDE:	OVERHEAD & PROFIT IN	ESTIMATE		TOTAL WEIGHT (TONS)	451.61522	70	NS .	GRAND TOTAL	\$1,831,984.72
								Square Footage	65,790.00
								S/SF	\$27.85

Table 66: Existing Design Penn State Ice Arena - Truss System Estimate

LONG SPAN TRUSS ECONOMICS COMPARISON & DESIGN

			E	xisting Long Sp	an Trusses				TRUSSES	
	Structural Member	Quantity	Weight/ft. (PLF)	Length (ft)	Total Weight (lb)	Total Weight (tons)	Cost/ft.	Cost	Total Costs	
	W14x74	4	74		11914	5.957	\$106.12	\$17,085.32		
	W14x74	4	74		9273.68	4.63684	\$106.12	\$13,298.96		
	W14x74	6	74		14208	7.104	\$106.12	\$20,375.04		
	W14x38	12	38		18696	9.348		\$28,408.08		
	W14x43	6	43		10578	5.289	\$64.13	\$15,775.98		
	W14x30	8	40		13120	6.56	\$46.42	\$15,225.76		
	W14x38	12	38		14250	7.125	\$57.74	\$21,652.50		
	W14x43	6	43		8062.5	4.03125	\$64.13	\$12,024.38		
	W14x30	8	30		7500	3.75		\$11,605.00		
	W14x38	18	38		21888	10.944	\$57.74	\$33,258.24		
	W14x43	9	43		12384	6.192	\$64.13	\$18,469.44		
	W14x30	12	30	32	11520	5.76	\$46.42	\$17,825.28	TOTAL	\$225,003.97
T-1	W14x132	2	132		15840	7.92		\$21,832.80		
T-1	W14x132	2	132		9900	4.95	\$181.94	\$13,645.50		
T-1	W14x99	2	99	59	11682	5.841	\$137.87	\$16,268.66		
T-1	W14x99	1	99	76	7524	3.762	\$137.87	\$10,478.12	PER TRUSS	\$102,072.98
T-1	W14x61	13	61	11.33	8984.69	4.492345	\$88.53	\$13,039.58	QUANTITY	6
T-1	2L8x8x1/2	14	52.8	17.6	13009.92	6.50496	\$108.80	\$26,808.32	TOTAL	\$612,437.90
T-2	W14x132	2	132	60	15840	7.92	\$181.94	\$21,832.80		
T-2	W14x132	2	132		10032	5.016	\$181.94	\$13,827.44		
T-2	W14x109	2	109		12971	6.4855	\$153.25	\$18,236.75		
T-2	W14x132	1	132	76	10032	5.016	\$181.94	\$13,827.44		
T-2	W14x61	3	61	11.33	2073.39	1.036695	\$88.53	\$3,009.13		
T-2	2L6x6x1/2	4	39.2	11.33	1776.544	0.888272	\$81.60	\$3,698.11	PER TRUSS	\$98,125.32
T-2	2L5x5x3/8	9	24.6	11.33	2508.462	1.254231	\$68.00	\$6,933.96	QUANTITY	1
T-2	2L8x6x1/2	14	46	16	10304	5.152	\$74.82	\$16,759.68	TOTAL	\$98,125.32
T-3	W14x132	2	132	59	15576	7.788	\$181.94	\$21,468.92		•
T-3	W14x132	2	132	37.5	9900	4.95	\$181.94	\$13,645.50		
T-3	W14x99	2	99	59	11682	5.841	\$137.87	\$16,268.66		
T-3	W14x99	1	99	76	7524	3.762	\$137.87	\$10,478.12	PER TRUSS	\$99,653.79
T-3	W14x61	13	61	11	8723	4.3615	\$88.53	\$12,659.79	QUANTITY	1
T-3	2L8x8x1/2	14	52.8	16.5	12196.8	6.0984	\$108.80	\$25,132.80	TOTAL	\$99,653.79
									GRAND TOTAL	\$1,035,220.98
									\$/SF	\$21.98

Table 67: HPR's Proposed Design - Truss System Estimate

LONG SPAN TRUSS ECONOMICS COMPARISON & DESIGN

	Existing Long Span Trusses							TRUSSES		
	Structural Member	Quantity	Weight/ft. (PLF)	Length (ft)	Total Weight (lb)	Total Weight (tons)	Cost/ft.	Cost	Total Costs	
	W14x53	36	53	41	78228	39.114	\$88.53	\$130,670.28		
	W14x26	36	26	35	32760	16.38	\$46.42	\$58,489.20		
	W14x26	54	26	32	44928	22.464	\$46.42	\$80,213.76		
	W24x104	4	104	41	17056	8.528	\$145.43	\$23,850.52		
	W24x104	4	104	35	14560	7.28	\$145.43	\$20,360.20		
	W24x104	6	104	32	19968	9.984	\$145.43	\$27,922.56	i	
	2L5x3-1/2x3/8x3/8LLB	24		21.5	0	0	\$71.04	\$36,656.64	TOTAL	\$378,163.
Гор	W14x43	2	43	12.4375	1069.625	0.5348125	\$64.13	\$1,595.23		
Гор	W14x43	2	43	12.333	1060.638	0.530319	\$64.13	\$1,581.83		
Гор	W14x43	2	43	12.229	1051.694	0.525847	\$64.13	\$1,568.49		
Гор	W14x43	2	43	12.167	1046.362	0.523181	\$64.13	\$1,560.54		
Гор	W14x43	2	43	12.094	1040.084	0.520042	\$64.13	\$1,551.18		
Гор	W14x53	2	53	12.052	1277.512	0.638756	\$88.53	\$2,133.93		
Гор	W14x53	2	53	12.021	1274.226	0.637113	\$88.53	\$2,128.44		
Гор	W14x53	2	53	14	1484	0.742	\$88.53	\$2,478.84		
3ottom	W14x43	2	43	12.229	1051.694	0.525847	\$64.13	\$1,568.49		
Bottom	W14x43	2	43	12.167	1046.362	0.523181	\$64.13	\$1,560.54		
Bottom	W14x43	2	43	12.094	1040.084	0.520042	\$64.13	\$1,551.18		
Bottom	W14x43	2	43	12.052	1036.472	0.518236	\$64.13	\$1,545.79		
Bottom	W14x43	2	43	12.021	1033.806	0.516903	\$64.13	\$1,541.81		
Bottom	W14x43	2	43	14	1204	0.602	\$64.13	\$1,795.64		
Tie	W27x146	2	146	124.35	36310.2	18.1551	\$200.78	\$49,933.99		
Tie	W24x117	1	117	76	8892	4.446	\$163.43	\$12,420.68		
/erticals	W14x68	2	90	11.9375	2148.75	1.074375	\$98.00	\$2,339.75		
/erticals	W14x68	4	90	14	5040	2.52	\$98.00	\$5,488.00		
/erticals	W8x18	10	18	14	2520	1.26	\$33.60	\$4,704.00		
Diagonals	W8x18	14	18	18.439	4646.628	2.323314	\$33.60	\$8,673.71		
/erticals	W8x18	2	18	7.229	260.244	0.130122	\$33.60	\$485.79		
									PER TRUSS	\$108,207.
									QUANTITY	
				1	OTAL WEIGHT:	37.77	tons		TOTAL	\$865,662.
									GRAND TOTAL	\$1,243,825.
									\$/SF	\$26.

Crane Analysis

Table 68: Overall Redesign Crane Analysis

Analysis is based on using the current project team's method versus HPR's method for the redesigned steel in the whole arena

	Design Difference (+/-)				
HPR Method	Material	Labor/Equip	O&P	Total	
Trusses - 150 Ton, 40 Ton, with Shoring	-\$271,989.69	-\$36,652.64	-\$76,543.30	-\$385,185.63	
Arena Steel - 150 Ton	-\$50,262.03	\$69,740.79	\$4,830.73	\$24,309.49	
Catwalk - 150 Ton	\$34,305.49	\$9,360.67	\$10,829.21	\$54,495.37	
Total	-\$287,946.23	\$42,448.82	-\$60,883.36	-\$306,380.77	

Baseline Method				
Trusses - 200 Ton, 300 Ton, No Shoring	-\$271,989.69	-\$112,401.17	-\$95,328.93	-\$479,719.80
Arena Steel - 200 Ton	-\$50,262.03	\$8,822.34	-\$10,277.04	-\$51,716.73
Catwalk - 200 Ton	\$34,305.49	\$7,514.16	\$10,371.27	\$52,190.92
Total	-\$287,946.23	-\$96,064.67	-\$95,234.70	-\$479,245.61

Difference	\$0.00	\$138,513.49	\$34,351.35	\$172,864.84
				36.07%

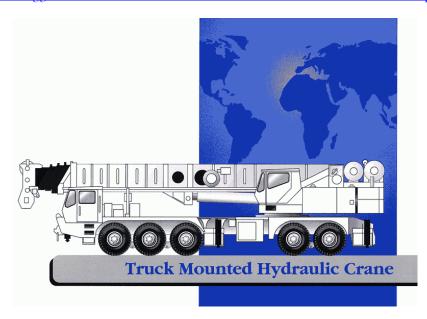
Table 69: Redesign Roof System Baseline vs. HPR's Method - Crane Analysis

Analysis is based on using the current project team's method versus HPR's method for new roof system steel and truss erection

Overhead & Profit Markup = 24.8%

	Design Difference (+/-)							
HPR Method		Material	Labor/Equip	O&P	Total (%	6)		
Trusses		-\$271,989.69	-\$30,477.56	-\$75,011.88	-\$377,479.13	-25.01%		
Shoring Towers		\$0.00	-\$6,175.08	-\$1,531.42	-\$7,706.50			
Catwalk		\$34,305.49	\$9,360.67	\$10,829.21	\$54,495.37	19.22%		
Roofs		-\$116,259.91	-\$42,258.22	-\$39,312.50	-\$197,830.63	-13.74%		
	Total	-\$353,944.11	-\$69,550.19	-\$105,026.59	-\$528,520.89	-16.35%		

Baseline Method					
Trusses	-\$271,989.69	-\$112,401.92	-\$95,329.12	-\$479,720.73	-31.78%
Catwalk	\$34,305.49	\$9,360.67	\$10,829.21	\$54,495.37	19.22%
Roofs	-\$116,259.91	-\$42,258.22	-\$39,312.50	-\$197,830.63	-13.74%
Total	-\$353,944.11	-\$145,299.47	-\$123,812.41	-\$623,055.99	-19.28%


Difference	\$0.00	\$75,749.28	\$18,785.82	\$94,535.10	15.17%

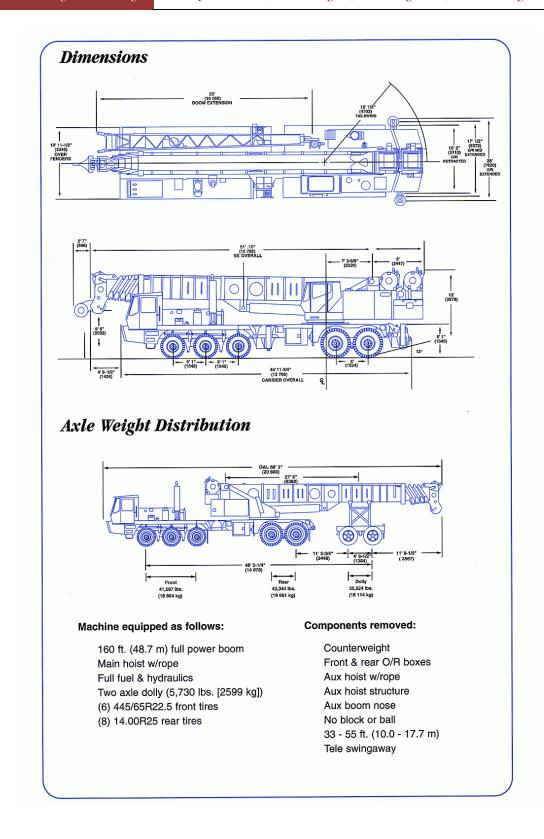
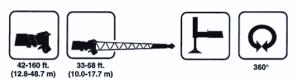
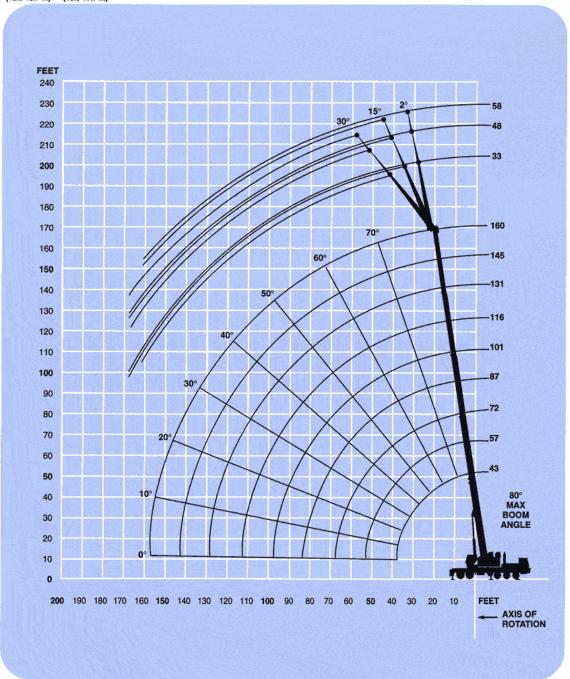
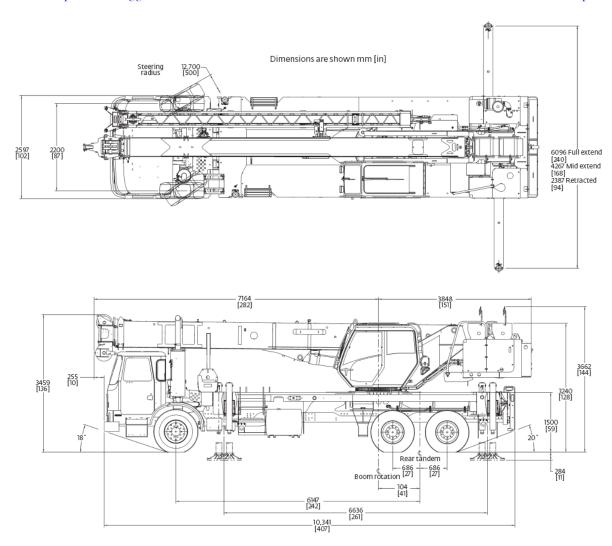

Crane Cut Sheets

Figure 125: Grove TM9150 - 150-Ton Hydraulic Crane


Figures are referenced from load charts found in document


http://www.bigge.com/crane-charts/truck-crane-charts/Grove-TM9150_NA_CS.pdf

Working range



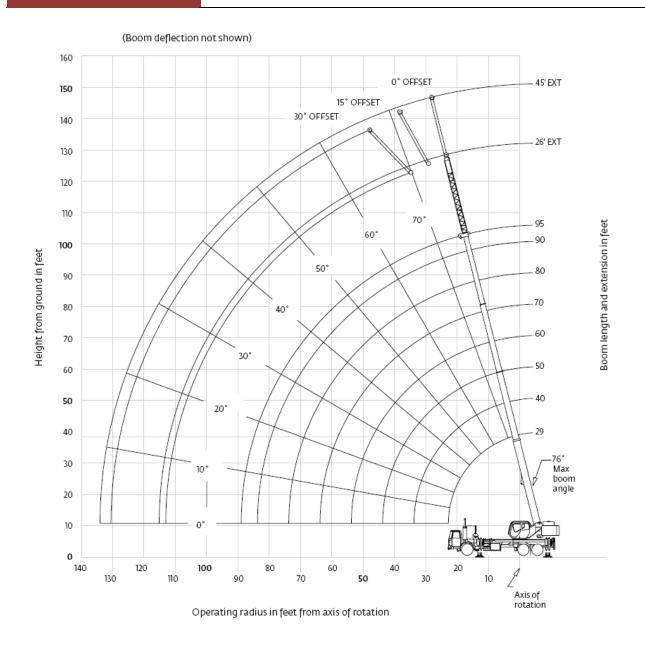

		160							*25,350	25,350	25,050	23,250	22,100	20,050	16,650	14,450	12,800	11,450	9,920	7,570	5,600	3,940	2,530		The second second	
		145						*32,050	32,050	32,050	31,900	30,800	29,000	24,700	21,400	18,550	14,950	11,400	8,560	6,230	4,280		RECORDER			
	85% Domestic (Pounds)	131					*43,400	43,400	43,150	39,850	36,600	34,000	31,350	27,050	23,150	18,100	13,550	10,000	7,190	4,880						
	85% Dome	116					*54,000	53,500	49,300	45,100	41,400	37,750	34,700	29,550	22,750	16,700	12,100	8,620								
· ·	\$ P	101				*69,750	69,350	62,650	56,800	51,150	46,400	42,450	38,700	29,100	21,250	15,200	10,650									
G §		87			*92,600	92,600	86,550	77,250	009'29	58,400	51,300	45,450	39,600	29,200	21,450									n angle.	. boom nose).	
1		27		*125,500	125,500	125,500	115,500	97,700	75,500	65,950	54,600	45,800	38,800	28,350										*This capacity is based upon maximum obtainable boom angle.	+14 parts of line required to lift this capacity (using aux. boom nose).	
lbs. Hoist		57		141,000	141,000	141,000	133,500	102,500	81,100	65,800	54,400	45,550												on maximum o	to lift this capa	
40,000 lbs. (18 144 kg) & Aux. Hoist		43	300,000	270,000	204,000	179,000	135,000	104,000	82,200	63,350														ofty is based up	of line required	
42 - 160 ft. (12.8 - 48.7 m)	F C	(Feet)	6	9	12	15	20	25	30	35	40	45	20	09	02	80	06	100	110	120	130	140	150	*This capac	+14 parts o	

Figure 126: Grove TM500 - 40-Ton Hydraulic Crane

Figures are referenced from load charts found in document

 $\underline{http://www.bigge.com/crane-charts/truck-crane-charts/Grove-TM500E-2_Product_Guide.pdf}$

${\bf Jeremy\ Heilman\ |\ Josh\ Progar\ |\ Nico\ Pugilese\ |\ James\ Rodgers}$

29 ft - 95 ft	t 3	3000 I E	o	100 20 ft		(Q 360°		29 ft - 95 ft	3	000 lb		100° 20 ft 0		Ove	Q er rear	
				P	ounds								Po	ounds			
\Box			М	ain boo	m leng	th in f	eet		(-			М	ain boo	m leng	th in f	eet	
Feet	29	40	50	60	70	80	90	95	Feet	29	40	50	60	70	80	90	95
8	80,000		50	80	70	80	90	95	8	+90,00							
10		50,100							10	(65.5) 63,000							
12	(61) 55,050		(75.5) 44,950						12	(61) 55,050			*38,850				
15	(56) 46,300				°29,450				15	(56) 46,300			(75.5)				
20	(48) 34,600 (30.5)	(62.5) 35,400 (53.5)	(69) 35,750 (62.5)	(73.5) 29,500 (68.5)	(75.5) 27,400 (72)	22,450 (75)	*18,550 (75.5)	°15,500 (75.5)	20	(48) 34,600 (30.5)	(62.5) 35,400 (53.5)	(69) 35,750 (62.5)	(73.5) 29,500 (68.5)		22,450 (75)	°18,550 (75.5)	°15,500 (75.5)
25	(30.3)	27,300 (43)	27,650 (55.5)		23,100	19,250	16,500 (73.5)	15,300 (74.5)	25	(30.5)	27,300 (43)	27,650 (55.5)	24,800	(72) 23,100 (67.5)	19,250	16,500 (73.5)	15,300 (74.5)
30		21,850 (29.5)	22,200	21,100 (57)	19,600	16,850	14,400	13,200 (71.5)	30		21,850 (29.5)	22,200 (48)	21,100	19,600	16,850	14,400 (70)	13,200 (71.5)
35		(23.5)	17,750 (38.5)	17,950 (51)		14,850	12,700	11,500	35		(23.3)	18,300 (38.5)	18,350	17,000	14,850	12,700	11,500
40			14,000 (26.5)		14,300 (52.5)	13,250 (58.5)	11,000	10,000	40			15,300 (26.5)	15,550 (44)	15,200 (52.5)	13,250 (58.5)	11,000	10,000 (65)
45			, ,	11,500 (35.5)	11,550 (47)	11,650 (54)	9630 (59)	9060 (61.5)	45	See Note 16			13,200 (35.5)	13,350	11,950	9630 (59)	9060 (61.5)
50	See Note 16			9480 (25)	9540 (40.5)	9600 (49.5)	8740 (55)	7990 (57.5)	50				11,350 (25)	11,300 (40.5)	10,800 (49.5)	8740 (55)	7990 (57.5)
55					7950 (33)	8000 (44)	7760 (51)	7100 (54)	55					9620 (33)	9630 (44)	7760 (51)	7100 (54)
60					6690 (23)	6720 (38)	6780 (46.5)	6320 (50)	60					8240 (23)	8280 (38)	6920 (46.5)	6320 (50)
65						5670 (31)	5750 (41.5)	5650 (45.5)	65						7170 (31)	6210 (41.5)	5650 (45.5)
70						4800 (21.5)	4890 (36)	4930 (40.5)	70						6220 (21.5)	5590 (36)	5080 (40.5)
75							4160 (29.5)	4210 (35.5)	75							5040 (29.5)	4570 (35.5)
80							3530 (20.5)	3590 (29)	80							4570 (20.5)	4120 (29)
85	1		۰	1 t- d I-		- 1d\		3050 (20.5)	85								3730 (20.5)
Maximu	ım boon	n length	(ft) at 0º	boom a	ength (no ngle (no	load)		0 95					icated ler boom a				0 95
NOTE: (#LMI op *This ca	pacity is	based c	n maxin	num boc	al for op om angle legree bo			ions.	#LMI op *This ca +Special	equipm	ent requ	iired to l	rees. MI manu ium booi ift this ca	apacity.			ions.
Boom angle	29	40	Mai 50	in boom 60	length ii	nfeet 80	90	95	Boom	L	ijung ca		at zero d in boom	-	-	ie	
0°	26,150 (22,7)	17,550 (33.8)	11,900 (43.8)	8250 (53.8)	5880 (63.8)	4220 (73.8)	3110 (83.8)	2670 (88.9)	angle 0°	29 26,150	40 17,550	50 13,100	60 10,100	70 7370	80 5600	90 4300	95 3730
NOTE: (nce radi		,,	,,	,/		0006510	NOTE: ((22.7)) Refere	(33.8) nce rad	(43.8) ii in feet	(53.8)	(63.8)	(73.8)	(83.8) 8	(88.9) 0006511

Main Arena Roof System Cost Impact

Table 70: Main Arena Roof System Cost Breakdown

Overhead & Profit Markup = 24.8%

		Base	line			Rede	sign			D	ifference (+/-)		
Item	Material Cost	Labor/Equip	0&P	Total Cost	Material Cost	Labor/Equip	0&P	Total Cost	Material	Labor/Equip	0&P	Total ((%)
Trusses	\$932,356.53	\$277,032.71	\$299,928.53	\$1,509,317.77	\$1,204,346.22	\$307,510.27	\$374,940.41	\$1,886,796.90	-\$271,989.69	-\$30,477.56	-\$75,011.88	-\$377,479.13	-25.01%
Shoring Towers					\$4,543.56	\$1,631.52	\$1,531.42	\$7,706.50	-\$4,543.56	-\$1,631.52	-\$1,531.42	-\$7,706.50	
Catwalk	\$169,866.84	\$57,297.54	\$56,336.77	\$283,501.15	\$135,561.35	\$47,936.87	\$45,507.56	\$229,005.78	\$34,305.49	\$9,360.67	\$10,829.21	\$54,495.37	19.22%
Roofs	\$781,075.14	\$372,307.61	\$286,038.92	\$1,439,421.67	\$897,335.05	\$414,565.83	\$325,351.42	\$1,637,252.30	-\$116,259.91	-\$42,258.22	-\$39,312.50	-\$197,830.63	-13.74%
Total	\$1.883.298.51	\$706.637.86	\$642.304.22	\$3,232,240,59	\$2,241,786,18	\$771,644,49	\$747.330.81	\$3,760,761.48	-\$358.487.67	-\$65.006.63	-\$105.026.59	-\$528,520,89	-16.35%

Table 71: Roof System Current Design - End Truss Size

		Weight	Length	Total Wt
	W14 x 61	61	146.751	8951.811
	W14 x 99	99	196.002	19404.198
	W14 x 132	132	196.066	25880.712
nss	W24 x 146	146	41.604	6074.184
End Truss	2L8 x 8 x 1/2	53.4	250.928	13399.5552
Enc		Total We	eight (lbs)	73711
		Total Wei	ght (Tons)	37
		\	Weight/LF	377
		Up to 1	00 ft Span	126

Table 72: Roof System Current Design - Inside Truss Size

		Weight	Length	Total Wt
	W14 x 61	61	35.182	2146.102
	W14 x 109	109	120.002	13080.218
	W14 x 145	145	76.025	11023.625
	W14 x 132	132	196.041	25877.412
S	2L8x8x5/8	66	35.697	2356.002
Inside Truss	2L5x5x3/8	24.8	69.883	1733.0984
Je T	2L6x4x3/8 LLBB	24.6	145.36	3575.856
nsic	2L6x6x1/2	39.3	41.345	1624.8585
=	2L8x6x1/2 LLBB	46.3	69.231	3205.3953
		Total We	eight (lbs)	64623
		Total Wei	ght (Tons)	33
		\	Weight/LF	330
		Up to 1	00 ft Span	110

Table 73: Roof System Current Design - Trusses & Purlins

Equipment costs based on same cranes used by Current Project Team

- 200 Ton & 300 Ton Hydraulic Cranes

Overhead & Profit Markup = 24.8%

					Material Cost	Equip/Labor	Total Material	Total Equip/		
Baseline Trusses	Quantity	Size	Unit/Hr	Unit	per Unit	per Unit	Cost	Labor Cost	O&P	Total Cost
Built-Up End Truss (50-100' Span)	6	12 1/3	1 1/9	Ton	\$2,278.50	\$546.18	\$168,609.00	\$40,417.51	\$51,838.57	\$260,865.08
End Truss On-Site Butt-Weld 1/2" - Material	4				\$45.57		\$182.28	\$0.00	\$45.21	\$227.49
End Truss On-Site Butt-Weld 1/2" - Labor	4	3	1 17/33	LF		\$82.17	\$0.00	\$986.04	\$244.54	\$1,230.58
Built-Up Inside Truss (50-100' Span)	18	11	1 1/9	Ton	\$2,278.50	\$546.18	\$451,143.00	\$108,144.14	\$138,703.21	\$697,990.35
End Truss On-Site Butt-Weld 1/2" - Material	16				\$45.57		\$729.12	\$0.00	\$180.82	\$909.94
End Truss On-Site Butt-Weld 1/2" - Labor	16	3	1 17/33	LF		\$82.17	\$0.00	\$3,944.16	\$978.15	\$4,922.31
W14 x 74 - Brace		18	25/47	Ton	\$1,884.96	\$812.30	\$33,929.28	\$14,621.36	\$12,040.56	\$60,591.20
W14 x 61 - Brace		22	5/11	Ton	\$2,045.61	\$948.05	\$45,003.42	\$20,857.13	\$16,333.42	\$82,193.96
W14 x 30 - Brace		12	5/11	Ton	\$2,045.61	\$948.05	\$24,547.32	\$11,376.61	\$8,909.14	\$44,833.07
W14 x 38 - Brace		23	5/11	Ton	\$2,045.61	\$948.05	\$47,049.03	\$21,805.18	\$17,075.84	\$85,930.05
W14 x 43 - Brace		27	5/11	Ton	\$2,045.61	\$948.05	\$55,231.47	\$25,597.38	\$20,045.56	\$100,874.41
2L8 x 8 x 3/4 x 3/4 - Angle		21	1 1/4	Ton	\$2,067.03	\$345.25	\$43,407.63	\$7,250.18	\$12,563.14	\$63,220.94
W24 x 176 - Column		23	5/8	Ton	\$1,724.31	\$689.44	\$39,659.13	\$15,857.06	\$13,768.01	\$69,284.20
W24 x 146 - Column		5	5/8	Ton	\$1,724.31	\$689.44	\$8,621.55	\$3,447.19	\$2,993.05	\$15,061.78
2L6x6x1/2x3/4 - Angle		5	64/91	Ton	\$2,848.86	\$545.76	\$14,244.30	\$2,728.78	\$4,209.32	\$21,182.41
						Total	\$932,356.53	\$277,032.71	\$299,928,53	\$1,509,317.77

Table 74: Roof System Redesign Truss Size

Truss	Weight	Length	Total Wt
W14 x 68	68	79.875	5431.5
W14 x 43	43	271.647	11680.821
W14 x 53	53	76.146	4035.738
W27 x 146	146	248.7	36310.2
W24 x 117	117	76	8892
W8 x 18	18	412.604	7426.872
	Total We	eight (lbs)	73778
	Total Wei	ght (Tons)	37
	'	Neight/LF	377
	Up to 1	.00 ft Span	126

Table 75: Roof System Redesign Trusses & Purlins

Equipment costs based on HPR's crane analysis (see Table 68 and 69 in Appendix G)

150 Ton & 40 Ton Hydraulic Crane

Overhead & Profit Markup = 24.8%

					Material Cost	Equip/Lab	Total Material	Total Equip/		
Trusses	Quantity	Size	Unit/Hr	Unit	per Unit	or per Unit	Cost	Labor Cost	O&P	Total Cost
Built Up End Truss (50-100' Span, 120 lb/ft)	24	12 1/3	1 1/4	Ton	\$2,278.50	\$403.25	\$674,436.00	\$119,361.58	\$196,861.80	\$990,659.38
End Truss On-Site Butt-Weld 1/2" - Material	16				\$45.57		\$729.12	\$0.00	\$180.82	\$909.94
End Truss On-Site Butt-Weld 1/2" - Labor	16	4 1/3	1 17/33	LF		\$82.17	\$0.00	\$5,697.12	\$1,412.89	\$7,110.01
W24 x 162		39	25/47	Ton	\$1,724.31	\$566.89	\$67,248.09	\$22,108.86	\$22,160.52	\$111,517.47
W14 x 82		118	5/11	Ton	\$1,884.96	\$666.37	\$222,425.28	\$78,631.27	\$74,662.02	\$375,718.57
2L6 x 6 x 1/2 x 3/4		6	64/91	Ton	\$2,848.86	\$504.28	\$17,093.16	\$3,025.65	\$4,989.47	\$25,108.28
2L5 x 3 1/2 x 3/8 x 3/8 LLBB		6	23/98	Ton	\$3,502.17	\$1,510.99	\$21,013.02	\$9,065.96	\$7,459.59	\$37,538.56
W14 x 99		73	5/11	Ton	\$1,884.96	\$666.37	\$137,602.08	\$48,644.77	\$46,189.22	\$232,436.07
W24 x 176 - Column		31	5/8	Ton	\$1,724.31	\$566.89	\$53,453.61	\$17,573.71	\$17,614.77	\$88,642.09
W24 x 146 - Column		6	5/8	Ton	\$1,724.31	\$566.89	\$10,345.86	\$3,401.36	\$3,409.31	\$17,156.53
_						Total	\$1,204,346.22	\$307,510.27	\$374,940.41	\$1,886,796.91

Table 76: Roof System Redesign Shoring

Overhead & Profit Markup = 24.8%

				Material Cost	Equip/Labor	Total Material	Total Equip/		
Redesign - Shoring	Quantity	Duration	Unit	per Unit	per Unit	Cost	Labor Cost	O&P	Total Cost
Truss 2'w x 5'h Shoring	88	3 1/2	Month	\$12.81		\$3,945.48		\$978.48	\$4,923.96
Erecting Each Frame	88				\$10.28		\$904.64	\$224.35	\$1,128.99
Dismantle Each Frame	88				\$8.26		\$726.88	\$180.27	\$907.15
Jacks	32	3 1/2	Month	\$5.34		\$598.08		\$148.32	\$746.40
		_			Total	\$4,543.56	\$1,631.52	\$1,531.42	\$7,706.50

Table 77: Roof System Current Design Catwalk

Equipment costs based on same cranes used by Current Project Team 200 Ton Hydraulic Crane

Overhead & Profit Markup = 24.8%

			Material Cost	Equip/Labor	Total Material	Total Equip/		
Catwalk	Size	Unit	per Unit	per Unit	Cost	Labor Cost	O&P	Total Cost
HSS 1.66 X .14	3	Ton	\$2,859.57	\$759.73	\$8,578.71	\$2,279.19	\$2,692.76	\$13,550.66
HSS 14X10X1/2	49	Ton	\$2,559.69	\$400.78	\$125,424.81	\$19,638.45	\$35,975.69	\$181,038.95
1/4" Checkered Plate	1506	SF	\$8.41	\$18.82	\$12,665.46	\$28,343.97	\$10,170.34	\$51,179.77
L4X4X3/8	6	Ton	\$3,866.31	\$1,172.65	\$23,197.86	\$7,035.92	\$7,497.98	\$37,731.75
				Total	\$169.866.84	\$57,297,54	\$56,336.77	\$283,501.14

Table 78: Roof System Redesign Catwalk

Equipment costs based on HPR's crane analysis (see Table 68 and 69 in Appendix G)

150 Ton Hydraulic Crane

Overhead & Profit Markup = 24.8%

			Material Cost	Equip/Labor	Total Material	Total Equip/		
Catwalk	Size	Unit	per Unit	per Unit	Cost	Labor Cost	O&P	Total Cost
HSS 1.66 X .14	3	Ton	\$2,859.57	\$708.67	\$8,578.71	\$2,126.00	\$2,654.77	\$13,359.48
HSS 14X10X1/2	36	Ton	\$2,559.69	\$373.80	\$92,148.84	\$13,456.83	\$26,190.21	\$131,795.88
1/4" Checkered Plate	1383.584	SF	\$8.41	\$18.32	\$11,635.94	\$25,347.36	\$9,171.86	\$46,155.16
L4X4X3/8	6	Ton	\$3,866.31	\$1,167.78	\$23,197.86	\$7,006.69	\$7,490.73	\$37,695.27
	_		_	Total	\$135,561.35	\$47,936.87	\$45,507.56	\$229,005.79

APPENDIX H: Façade Redesign

Current Design's LEED Score Card

10.21.11

PEGULA ICE ARENA

LEED SCORECARD

				PORT	s	PSU
		YES	2	NO	POSSIBLE	REQUIREMENTS
P.1	CONSTRUCTION ACTIVITY POLLUTION PREVENTION	RBO			RBO	MANDATORY
C1	SITE SELECTION	1			1	MINMAL EFFORT
6.2	DEVELOPMENT DENSITY + COMMUNITY CONNECTIVITY	5			s	MINMAL EFFORT
C.3	BROWNFIELD REDEVELOPMENT	100		1.	1	MINMAL EFFORT
C.4.1	ALTERNATIVE TRANSPORTATION - PUBLIC TRANSPORTATION	8			6	MINMAL EFFORT
042	ALTERNATIVE TRANSPORTATION - BICYCLE STORAGE + CHANGING ROOMS	1.			10	SIGNIFICANT EFFORT
6.4.3	ALTERNATIVE TRANSPORTATION - LOW-EMITTING + FUEL-EFFICIENT VEHICLES			3	3	MINMAL EFFORT
C4.4	ALTERNATIVE TRANSPORTATION - PARKING CAPACITY	2		11	2	MINMAL EFFORT
C.5.1	SITE DEVELOPMENT - PROTECT OR RESTORE HABITAT		1		1	MINMAL EFFORT
C.5.2	SITE DEVELOPMENT - MAXIMIZE OPEN SPACE		1		10	SIGNIFICANT EFFORT
C.6.1	STORMWATER DESIGN - QUANTITY CONTROL	1			1	MANDATORY
0.6.2	STORMWATER DESIGN - QUALITY CONTROL		13		6	SIGNIFICANT EFFORT
C.7.1	HEAT ISLAND EFFECT- NON-ROOF		1		1	MINMAL EFFORT
6.7.2	HEAT ISLAND EFFECT- ROOF	10			10	SIGNIFICANT EFFORT
Ca	LIGHT POLLUTION REDUCTION	100	174		45	NOT PURSUED!
		17	6	4	26	CO.HECTHE PRODUCT
		YES	2	NO	POSSIBLE	REQUIREMENTS
P.1	WATER USE REDUCTION - 20% REDUCTION	RBO	- 00		A 100 PAGE 1	
					RBO	MANDATORY
C.1	WATER EFFICIENT LANDSCAPING	4		Н	RB0 2 TO 4	MANDATORY MINIMAL EFFORT
G1 G2		9.915	2		.764.	MINIMAL EFFORT
	WATER EFFICIENT LANDSCAPING	9.915	2 2		2 TO 4	MINMAL EFFORT MINMAL EFFORT
C.2	WATER EFFICIENT LANDSCAPING INNOVATIVE WASTEWATER TECHNOLOGIES	4		0	2 TO 4	MINIMAL EFFORT
C.2	WATER EFFICIENT LANDSCAPING INNOVATIVE WASTEWATER TECHNOLOGIES	2	4		2 TO 4 2 2 TO 4 10	MINIMAL EFFORT MINIMAL EFFORT SIGNIFICANT / MINIMA
C.2	WATER EFFICIENT LANDSCAPING INNOVATIVE WASTEWATER TECHNOLOGIES	2	4		2 TO 4 2 2 TO 4 10	MINIMAL EFFORT MINIMAL EFFORT SIGNIFICANT / MINIMA TMOSPHER PSU
C.2	WATER EFFICIENT LANDSCAPING INNOVATIVE WASTEWATER TECHNOLOGIES	2	4	VER	2 TO 4 2 2 TO 4 10	MINMAL EFFORT MINMAL EFFORT SIGNIFICANT / MINMA TMOSPHER
C.2	WATER EFFICIENT LANDSCAPING INNOVATIVE WASTEWATER TECHNOLOGIES	2 6	2 4	PORT	2 TO 4 2 2 TO 4 10 GY + A	MINIMAL EFFORT MINIMAL EFFORT SIGNIFICANT / MINIMA TMOSPHER PSU
C.2 C.3 P.1 P.2	WATER EFFICIENT LANDSCAPING INNOVATIVE WASTEWATER TECHNOLOGIES WATER USE REDUCTION	2 6 VIBS	2 4	PORT	2 TO 4 2 2 TO 4 10 1GY + A 8 POSSIBLE	MINIMAL EFFORT MINIMAL EFFORT SIGNIFICANT / MINIMA TMOSPHER PSU RECURREMENTS
C.2 C.3 P.1	WATER EFFICIENT LANDSCAPING INNOVATIVE WASTEWATER TECHNOLOGIES WATER USE REDUCTION FUNDAMENTAL COMMISSIONING OF BUILDING ENERGY SYSTEMS	4 2 6 6 VIBS RBO	2 4	PORT	2 TO4 2 2 TO4 10 GY + A S POSSIBLE REQ	MINIMAL EFFORT MINIMAL EFFORT SIGNIFICANTY MINIMA TMOSPHER PSU RECURREMENTS MANDATORY
C.2 C.3 P.1 P.2	WATER EFFICIENT LANDSCAPING INNOVATIVE WASTEWATER TECHNOLOGIES WATER USE REDUCTION FUNDAMENTAL COMMISSIONING OF BUILDING ENERGY SYSTEMS MINIMUM ENERGY PERFORMANCE	2 6 VIBS RBO RBO	2 4	PORT	2 TO 4 2 2 TO 4 10 GY + A S POSSIBLE RBO RBO	MINIMAL EFFORT MINIMAL EFFORT SIGNIFICANT / MINIMA TMOSPHER PSU REGUREMENTS MANDATORY MANDATORY MANDATORY
C.2 C.3 P.1 P.2 P.3	WATER EFFICIENT LANDSCAPING INNOVATIVE WASTEWATER TECHNOLOGIES WATER USE REDUCTION FUNDAMENTAL COMMISSIONING OF BUILDING ENERGY SYSTEMS MINIMUM ENERGY PERFORMANCE FUNDAMENTAL REFRIGERANT MANAGEMENT	4 2 6 6 VIBS R80 R80 R80	2 4	POWN	2 TO 4 2 2 TO 4 10 GY + A 8 POSSIBLE RB0 RB0 RB0	MINIMAL EFFORT MINIMAL EFFORT SIGNIFICANT / MINIMA TMOSPHER PSU REGURENMENTS MANDATORY MANDATORY MANDATORY MANDATORY MANDATORY MANDATORY
C.2 C.3 P.1 P.2 P.3 C.1	WATER EFFICIENT LANDSCAPING INNOVATIVE WASTEWATER TECHNOLOGIES WATER USE REDUCTION FUNDAMENTAL COMMISSIONING OF BUILDING ENERGY SYSTEMS MINIMUM ENERGY PERFORMANCE FUNDAMENTAL REFRIGERANT MANAGEMENT OPTIMIZE ENERGY PERFORMANCE	4 2 6 6 VIBS R80 R80 R80	2 4	PORTING S	2 TO 4 2 2 TO 4 10 GY + A 8 POSSIBLE RED RED I TO 19	MINIMAL EFFORT MINIMAL EFFORT SIGNIFICANT / MINIMA TMOSPHER PSU REGURENMENTS MANDATORY MANDATORY MANDATORY MANDATORY MANDATORY MANDATORY
P.1 P.2 P.3 C.1 C.2	WATER EFFICIENT LANDSCAPING INNOVATIVE WASTEWATER TECHNOLOGIES WATER USE REDUCTION FUNDAMENTAL COMMISSIONING OF BUILDING ENERGY SYSTEMS MINIMUM ENERGY PERFORMANCE FUNDAMENTAL REFRIGERANT MANAGEMENT OPTIMIZE ENERGY PERFORMANCE ON-SITE RENEWABLE ENERGY	2 6 VIBS REO REO S	2 4	PORTING S	2 TO 4 2 2 TO 4 10 GY + A S POSSIBLE RBO RBO RBO I TO 19	MINIMAL EFFORT MINIMAL EFFORT SIGNIFICANT / MINIMA TMO SPHER PSU REGUREMENTS MANDATORY MANDATORY MANDATORY MANDATORY MANDATORY MANDATORY/ NOT PURSUED
P.1 P.2 P.3 C.1 C.2 C.3	WATER EFFICIENT LANDSCAPING INNOVATIVE WASTEWATER TECHNOLOGIES WATER USE REDUCTION FUNDAMENTAL COMMISSIONING OF BUILDING ENERGY SYSTEMS MINIMUM ENERGY PERFORMANCE FUNDAMENTAL REFRIGERANT MANAGEMENT OPTIMIZE ENERGY PERFORMANCE ON-SITE RENEWABLE ENERGY ENHANCED COMMISSIONING	2 6 6 VIBS RBO RBO S	2 4	PORTING S	2 TO 4 2 2 TO 4 10 GY + A S POSSIBLE RB0 RB0 RB0 I TO 19 I TO 7 2	MINIMAL EFFORT MINIMAL EFFORT SIGNIFICANT / MINIMA TMO SPHER PSU REGUREMENTS MANDATORY
P.1 P.2 P.3 C.1 C.2 C.3 C.4	WATER EFFICIENT LANDSCAPING INNOVATIVE WASTEWATER TECHNOLOGIES WATER USE REDUCTION FUNDAMENTAL COMMISSIONING OF BUILDING ENERGY SYSTEMS MINIMUM ENERGY PERFORMANCE FUNDAMENTAL REFRIGERANT MANAGEMENT OPTIMIZE ENERGY PERFORMANCE ON-SITE RENEWABLE ENERGY ENHANCED COMMISSIONING ENHANCED REFRIGERANT MANAGEMENT	2 6 6 VIBS RBO RBO S	2 4	PCB/T N/O	2 TO 4 2 2 TO 4 10 GY + A S POSSIBLE RED RED RED I TO 19 1 TO 7 2 2	MINIMAL EFFORT MINIMAL EFFORT SIGNIFICANT / MINIMA TMO SPHER PSU REGUREMENTS MANDATORY
R1 P2 P3 C1 C2 C3 C4 C5	WATER EFFICIENT LANDSCAPING INNOVATIVE WASTEWATER TECHNOLOGIES WATER USE REDUCTION FUNDAMENTAL COMMISSIONING OF BUILDING ENERGY SYSTEMS MINIMUM ENERGY PERFORMANCE FUNDAMENTAL REFRIGERANT MANAGEMENT OPTIMIZE ENERGY PERFORMANCE ON-SITE RENEWABLE ENERGY ENHANCED COMMISSIONING ENHANCED REFRIGERANT MANAGEMENT MEASUREMENT + VERIFICATION	2 6 6 VIBS RBO RBO S 2 2 2	2 4	PCB/T NO S	2 TO 4 2 2 TO 4 10 GY + A 8 POSSIBLE RED RED I TO 19 1 TO 7 2 2 3	MINIMAL EFFORT MINIMAL EFFORT SIGNIFICANT / MINIMA TMOSPHER PSU REGUREMENTS MANDATORY NOT PURSUED

${\bf Jeremy\ Heilman\ |\ Josh\ Progar\ |\ Nico\ Pugilese\ |\ James\ Rodgers}$

		D	IAI	TER	IALS +	RESOURCE
		_		РОВЛ		103000
		YIBS	2	NO.	POSSIBLE	PSU REQUIREMENTS
P.1	STORAGE + COLLECTION OF RECYCLABLES	RBO	2.6	inc.	REO	MANDATORY
C.1.1	BUILDING REUSE - MAINTAIN EXISTING WALLS, FLOORS, AND ROOF	ILD.		2	1 103	MINMAL EFFORT
	BUILDING REUSE - MAINTAIN 50% OF INTERIOR NON-STRUCTURAL ELEMENTS	-		I	1.	MINMAL EFFORT
C.2	CONSTRUCTION WASTE MANAGEMENT	2			1 102	MANDATORY
C3	MATERIALS REUSE	-		2	1 102	MINMAL EFFORT
64	RECYCLED CONTENT	2		-	1 102	MANDATORY/
C2	REGIONAL MATERIALS	2			1 102	MANDATORY
C.S.	RAPIDLY RENEWABLE MATERIALS	177	-1		1	MINMAL EFFORT
C.7	CERTIFIED WOOD	1	-		1	MANDATORY
		7	1	6	14	1.10,700,000
	The second secon		-	-		and the latest state of th
	INDO)R E	N V	IRO	NMENT	AL QUALIT
				PORT	s	FSU
		YES	2	NO	POSSIBLE	REQUIREMENTS
P.1	MINIMUM INDOOR AIR QUALITY PERFORMANCE	RBO			RBO	MANDATORY
P.2	ENVIRONMENTAL TOBACCO SMOKE (ETS) CONTROL	RBO			RBO	MANDATORY
C1	OUTDOOR AIR DELIVERY MONITORING	1			- 1	MANDATORY
C.2	INCREASED VENTILATION	1		Ť	1	NOT PURSUED
C.3.1	CONSTRUCTION IAQ MANAGEMENT PLAN	-71			T.	MANDATORY
0.3.2	CONSTRUCTION IAQ MANAGEMENT PLAN	1			- 1	MANDATORY
C.4.1	LOW-EMITTING MATERIALS	1		160	1	MANDATORY
C.4.2	LOW-EMITTING MATERIALS	1			î	MANDATORY
C.4.3	LOW-EMITTING MATERIALS	1.1		-	17	MANDATORY
	LOW-EMITTING MATERIALS	-7			1.	MANDATORY
0.5	INDOOR CHEMICAL + POLLUTION SOURCE CONTROL	1			- 1	MANDATORY
C.6.1	CONTROLLABILITY OF SYSTEMS	1		160	1	MANDATORY
C.8.2	CONTROLLABILITY OF SYSTEMS	1		-	- 1	SIGNIFICANT EFFOR
C.7.1	THERMAL COMFORT	1		12	- 1	SIGNIFICANT EFFOR
C.7.2	THERMAL COMFORT	1		(8)	10	MANDATORY
C.8.1	DAYLIGHT AND VIEWS	1			1.	SIGNIFICANT EFFOR
0.8.2	DAYLIGHT AND VIEWS	132		t	- 1	MINMAL EFFORT
-0.75	7. 767 354 05 620 0764 40 076 7.	13	0	2	15	
_	INN	OVA	SHI.			IN PROCES
		NAME OF		PORT		PSU REQUIREMENTS
	NUMBER OF STREET	YIBS	3	NO.	POSSIBLE	1.500,000,000,000
G.1.1	INNOVATION IN DESIGN - GREEN CLEANING	1			- !	MINMAL EFFORT
	INNOVATION IN DESIGN - EDUCATION	-1	100	180	10	MINMAL EFFORT
	INNOVATION IN DESIGN - WASTE STREAM	133	1	1.3		MINMAL EFFORT
	INNOVATION IN DESIGN - ICE GENERATION	1	1	-	- 1	MINMAL EFFORT
1000	INNOVATION IN DESIGN	0.5	-3.	280	10	SIGNIFICANT EFFOR
1.2	LEED ACCREDITED PROFESSIONAL					MINMAL EFFORT
		4	3	0	6	
		REG	101	IAL	PRIOR	TY CREDIT
				POMIT	s	PSU
		YES	?	NO	POSSIBLE	REGUREMENTS
0.1.1	REGIONAL PRIORITY - SS C.4.4 - ALTERNATIVE TRANSPORTATION	3			1,	MINIMAL EFFORT
C.1.2	REGIONAL PRIORITY - WEIG 1 WATER EFFICIENT LANDSCAPING	1			- 1	MINMAL EFFORT
C.1.3	REGIONAL PRIORITY - WE C.2 INNOVATIVE WASTEWATER TREATMENT	34		180	1	MINMAL EFFORT
	REGIONAL PRIORITY -	.35	1		10	MINIMAL EFFORT
6.1.4		-	3	0	4	
GIA		2	1	0	43	
G.1.4	PLATINUM = 50 TO 110	Abdress and	-		4)	
L.1.4	PLATINUM = 80 TO 110 GOLD = 80 TO 79	YES	?	NO	4	

LEED Energy and Atmosphere Credit 1

EA Credit 1: Optimize Energy Performance

1-19 Points

Intent

To achieve increasing levels of energy performance beyond the prerequisite standard to reduce environmental and economic impacts associated with excessive energy use.

Requirements

Select 1 of the 3 compliance path options described below. Project teams documenting achievement using any of the 3 options are assumed to be in compliance with EA Prerequisite 2: Minimum Energy Performance.

OPTION 1. Whole Building Energy Simulation (1-19 points)

Demonstrate a percentage improvement in the proposed building performance rating compared with the baseline building performance rating. Calculate the baseline building performance according to Appendix G of ANSI/ASHRAE/IESNA Standard 90.1-2007 (with errata but without addenda') using a computer simulation model for the whole building project. The minimum energy cost savings percentage for each point threshold is as follows:

New Buildings	Existing Building Renovations	Points
12%	8%	1
14%	10%	2
16%	12%	3
18%	14%	4
20%	16%	5
22%	18%	6
24%	20%	7
26%	22%	8
28%	24%	9
30%	26%	10
32%	28%	11
34%	30%	12
36%	32%	13
38%	34%	14
40%	36%	15
42%	38%	16
44%	40%	17
46%	42%	18
48%	44%	19

¹ Project teams wishing to use ASHRAE approved addenda for the purposes of this credit may do so at their discretion. Addenda must be applied consistently across all LEED credits.

LEED 2009 FOR NEW CONSTRUCTION AND MAJOR RENOVATIONS

35

H.A.M. Toolbox Analyses

Figure 127: Poor Exterior Cavity Wall Assembly - No Insulation

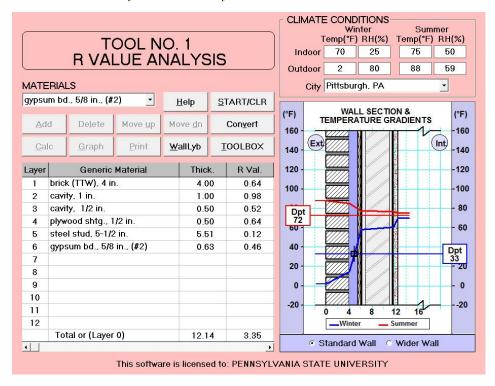


Figure 128: CMU Block Backup Exterior Cavity Wall - R-Value Analysis

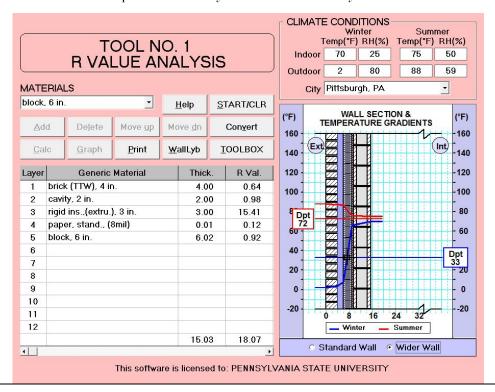


Figure 129: Structural Stud Backup - Exterior Cavity Wall - R-Value Analysis

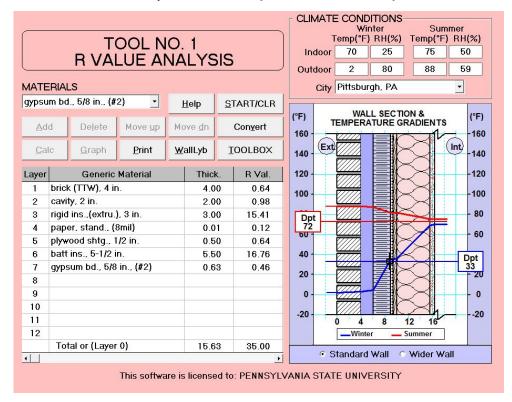


Figure 130: CMU Block Backup - Summer - Condensation Analysis

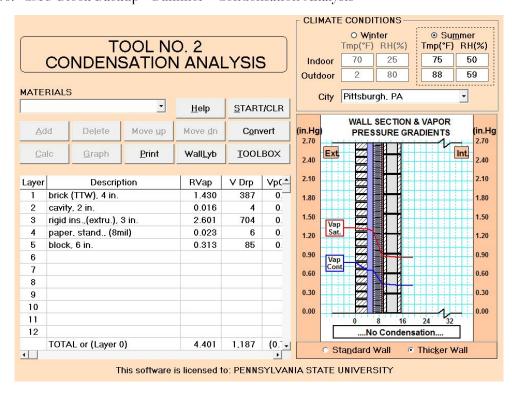


Figure 131: CMU Block Backup - Winter - Condensation Analysis

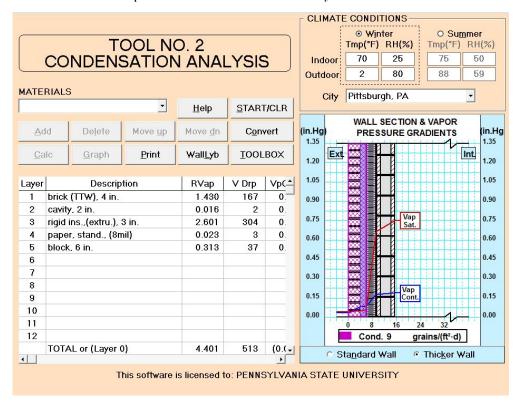


Figure 132: Structural Stud Backup - Summer - Condensation Analysis

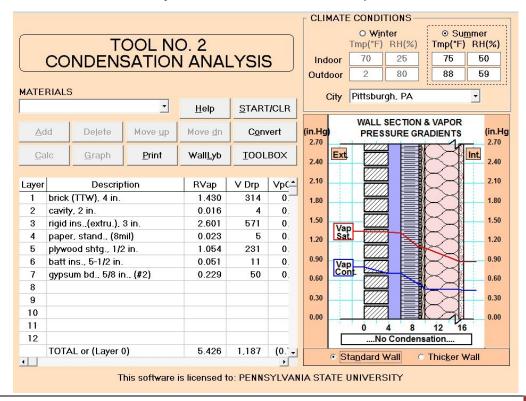
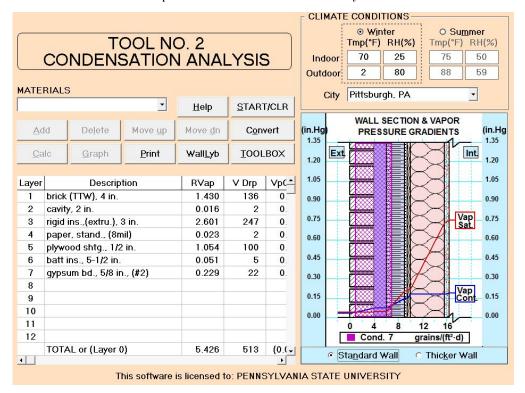



Figure 133: Structural Stud Backup - Winter - Condensation Analysis

Façade Redesign Cost Impact

Table 79: Façade & Entrances Cost Breakdown

Overhead & Profit Markup = 24.8%

	Baseline					
Item	Material Cost	Labor/Equip	O&P	Total Cost		
Exterior Glazing w/ Mullions (East						
Façade Only)	\$490,688.23	\$78,840.92	\$141,243.23	\$710,772.38		
Exterior Walls (East Faç & Entrances)	\$0.00	\$0.00	\$0.00	\$0.00		
	A 400 COO 00	470 040 00	A	4740 770 00		

Redesign								
Material Cost	Labor/Equip	O&P	Total Cost					
\$397,294.83	\$63,835.01	\$114,360.20	\$575,490.04					
\$84,019.18	\$101,256.60	\$45,948.39	\$231,224.17					

		Baseli	ine			Redes	ign			Dif	ference (+/-))	
	Material Cost	Labor/Equip	O&P	Total Cost	Material Cost	Labor/Equip	O&P	Total Cost	Material	Labor/Equip	O&P	Total (%)
	\$490,688.23	\$78,840.92	\$141,243.23	\$710,772.38	\$397,294.83	\$63,835.01	\$114,360.20	\$575,490.04	\$93,393.40	\$15,005.91	\$26,883.03	\$135,282.34	23.51%
s)	\$0.00	\$0.00	\$0.00	\$0.00	\$84,019.18	\$101,256.60	\$45,948.39	\$231,224.17	-\$84,019.18	-\$101,256.60	-\$45,948.39	-\$231,224.17	
	\$490,688.23	\$78,840.92	\$141,243.23	\$710,772.38	\$481,314.01	\$165,091.61	\$160,308.59	\$806,714.21	\$9,374.22	-\$86,250.69	-\$19,065.36	-\$95,941.83	-13.50%

Table 80: East Façade Material Cost Breakdown

Overhead & Profit Markup = 24.8%

		Baseline						
East Façade	Material Cost	Labor/Equip	O&P	Total Cost				
Glazing	\$422,137.77	\$67,826.63	\$121,511.17	\$611,475.57				
Exterior Walls	\$0.00	\$0.00	\$0.00	\$0.00				

Material Cost	Labor/Equip	O&P	Total Cost
\$396,124.73	\$63,647.01	\$114,023.39	\$573,795.13
\$40,240.18	\$52,111.98	\$22,903.34	\$115,255.50
\$436 364 91	\$115 758 99	\$136 926 73	\$689 050 63

Difference (+/-)								
Material	Labor/Equip	O&P	Total ((%)				
\$26,013.04	\$4,179.62	\$7,487.78	\$37,680.44	6.57%				
-\$40,240.18	-\$52,111.98	-\$22,903.34	-\$115,255.50					

\$422,137.77 \$67,826.63 \$121,511.17 \$611,475.57 \$436,364.91 \$115,758.99 \$136,926.73 \$689,050.63 \$-\$14,227.14 -\$47,932.36 -\$15,415.56 -\$77,575.06 -12.69% Table 81: Main & Student Entrances Cost Breakdown

Overhead & Profit Markup = 24.8%

		Baseli	ine			Redes	ign		E		Dif	ference (+/-)		
Entrances	Material Cost	Labor/Equip	O&P	Total Cost	Material Cost	Labor/Equip	O&P	Total Cost		Material	Labor/Equip	O&P	Total	(%
Glazing	\$68,550.46	\$11,014.29	\$19,732.06	\$99,296.81	\$1,170.10	\$188.00	\$336.81	\$1,694.91		\$67,380.36	\$10,826.29	\$19,395.25	\$97,601.90	5
Exterior Walls (East Faç & Entrances)	\$0.00	\$0.00	\$0.00	\$0.00	\$43,779.00	\$49,144.62	\$23,045.06	\$115,968.68	-	-\$43,779.00	-\$49,144.62	-\$23,045.06	-\$115,968.68	Γ
•	-				-				_					
Total	\$68,550.46	\$11,014.29	\$19,732.06	\$99,296.81	\$44,949.10	\$49,332.62	\$23,381.87	\$117,663.59	ſ	\$23,601.36	-\$38,318.33	-\$3,649.81	-\$18,366.78	Г

Redesign							
Material Cost	Labor/Equip	O&P	Total Cost				
\$1,170.10	\$188.00	\$336.81	\$1,694.91				
\$43,779.00	\$49,144.62	\$23,045.06	\$115,968.68				
\$ 13,773.00	ψ13/11110L	Q25,0 15.00	φ113,300.0c				

Difference (+/-)								
Material	Labor/Equip	0&P	Total	(%)				
\$67,380.36	\$10,826.29	\$19,395.25	\$97,601.90	5758.53%				
-\$43,779.00	-\$49,144.62	-\$23,045.06	-\$115,968.68					

<u>Façade Redesign Schedule Impact</u>

Table 82: Façade & Entrance Schedule Impact

	Baseline Manhours	Redesign Manhours	Differer	nce (%)
Glazing	1984.81	1607.03	377.78	19.03%
Exterior Walls	0	2982.73	-2982.73	

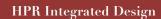

_					
	Total	1984.81	4589.76	-2604.95	-131.24%

Table 83: East Façade Schedule Impact

Baseline Manhours	Redesign Manhours	Difference (%)				
1707.86	1602.3	105.56	6.18%			
	1333.29	-1333.29				
	Manhours 1707.86	Manhours Manhours 1707.86 1602.3	Manhours Manhours Differen 1707.86 1602.3 105.56			

Total	1707.86	2935.59	-1227.73	-71.89%

BIM THESIS PROPOSAL

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

Table 84: Entrances Schedule Impact

Entrances	Baseline Manhours	Redesign Manhours	Difference (%)				
Glazing for Entrances	276.95	4.73	272.22	98.29%			
Brick & Other Materials for Entrances		1649.44	-1649.44				

Total	276.95	1654.17	-1377.22	-497.28%

APPENDIX I: Redesign Schedule

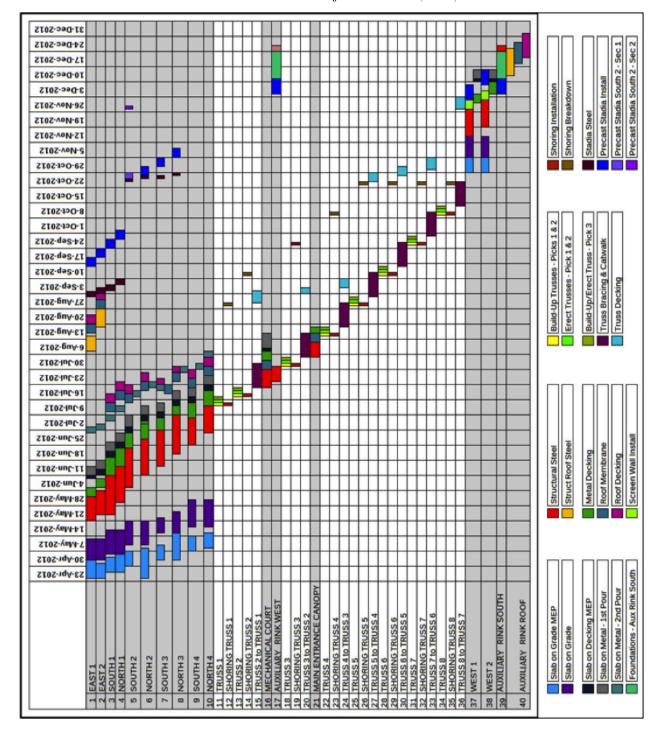
Table 85: HPR's Project Redesign Schedule

Activity ID	Activity Name	Remaining Duration		Finish	
BE PSU HOCKEY P	enn State Ice Arena Redesign	469	12-Dec-11	11-0 ct-13	
	MOBILIZE TRAILERS TO SITE	10	12-Dec-11	23-Dec-11	
— A1010	MOBILIZE MGMT TEAM TO SITE	10	27-Jan-12	09-Feb-12	
— A1020	SITE PREP	20	10-Feb-12	08-Mar-12	
— A1030	SITE UTILITIES	96	10-Feb-12	25-Jun-12	
— A1040	EXCAVATION	28	24-Feb-12	03-Apr-12	
— A1050	FOUNDATIONS - PILES, FOOTERS, & WALLS	188	28-Mar-12	20-Dec-12	
— A1060	SLAB ON GRADE	143	24-Apr-12*	13-Nov-12	
— A1070	STEEL ERECTION	152	21-May-12*	24-Dec-12	
— A1080	METAL DECKING	132	31-May-12*	05-Dec-12	
— A1090	SLAB ON METAL DECK	130	08-Jun-12*	11-Dec-12	
— A1100	ERECT STEEL STAIRS	128	11-Jun-12*	10-Dec-12	
— A1110	EXTERIOR WALLS	153	28-Jun-12*	04-Feb-13	
■ A1120	ROOF ENCLOSURES	123	10-Jul-12*	02-Jan-13	
— A1130	SHORING TOWERS	74	12-Jul-12*	24-0ct-12	
— A1140	BUILD-UP & ERECT TRUSSES	74	12-Jul-12*	24-0ct-12	
— A1150	EQUIPMENT INSTALLATION	187	12-Jul-12*	04-Apr-13	
— A1160	ELEVATORS INSTALLATION	184	16-Jul-12*	03-Apr-13	
— A1170	INTERIOR STUD FRAMING	123	18-Jul-12*	10-Jan-13	
— A1180	CURTAIN WALLS	124	23-Jul-12*	16-Jan-13	
— A1190	INTERIOR FINISHES	198	25-Jul-12*	02-May-13	
— A1200	ROUGH-IN	129	26-Jul-12*	28-Jan-13	
— A1210	FIRE SPRINKLERS	138	06-Aug-12*	19-Feb-13	
— A1220	DRYWALL	158	21-Aug-12*	03-Apr-13	
— A1230	TRUSS DECKING	68	29-Aug-12*	04-Dec-12	
— A1240	PRECAST STADIA - MAIN ARENA	61	17-Sep-12*	11-Dec-12	
— A1250	ELECTRICAL	108	26-0ct-12*	29-Mar-13	
— A1260	LIGHTING	107	01-Nov-12*	03-Apr-13	
■ A1270	HVAC	104	05-Nov-12*	02-Apr-13	
■ A1280	PLUMBING	106	15-Nov-12*	16-Apr-13	
■ A1290	SCREEN WALL	6	26-Nov-12*	03-Dec-12	
■ A1300	PRECAST STADIA - AUXILIARY RINK	4	04-Dec-12*	07-Dec-12	
■ A1310	STADIA STEPS	40	12-Dec-12*	07-Feb-13	
■ A1320	ICE FLOOR 4" UNDERDRAIN	15	12-Dec-12*	03-Jan-13	
■ A1330	SITEWORK & LANDSCAPE		13-Dec-12*	13-Aug-13	
■ A1340	ICE SLABS		07-Jan-13*	26-Apr-13	
■ A1350	MAIN ARENA SEATS & RAILINGS		18-Feb-13*	07-May-13	
■ A1360	SYSTEMS TESTING & START-UP		25-Feb-13*	13-Aug-13	
■ A1370	AUXILIARY RINK SEATS & RAILINGS		18-Apr-13*	01-May-13	
■ A1380	PSU FURNITURE, FIXTURES, & EQUIPMENT		04-Jun-13*	13-Aug-13	
■ A1390	COMMISSIONING		18-Jun-13*	27-Aug-13	
■ A1400	PENN STATE MOVE-IN	15	14-Aug-13*	04-Sep-13	
■ A1410	1ST PUCK DROP	1		11-0ct-13	

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

Table 86: HPR's Project Overall Redesign Schedule Impact

	Baseline								
Item - Schedule Days	Item Time	Item Units	Project Days	Sched Days					
Excavation (Days)	251		35	35					
Foundation Walls (sf)/Columns(ft)		25231.884	59	59					
Int Wall Framing (sf)		225077.115	89	122					
Int Wall Drywall (sf)		478486.734	85	141					
Arena Bowl Stadia/Walls (tons)		162	34	84					
Arena Bowl Seating (each)		5947	53	53					
Arena Bowl Steps (cf)		3434.954	41	41					
Exterior Wall Framing (sf)/Sheathing		65162.774	75	109					
Exterior Wall Insulation (sf)		40309.989	21	64					
Exterior Wall Vapor Barrier (sf)		50748.327	21	64					
Exterior Brick (sf)		40292.063	61	78					
Exterior Brick Ties to Framing (sf)		20410.958	24	64					
Exterior/Interior CMU (sf)		35330.784	31	31					
Exterior Brick Ties to CMU (sf)		19881.105	12	29					
Steel Structure Members (tons)		537	91	91					
Build-Up Trusses (welded ft)		60	16	16					
Errect Trusses (tons)		272	8	8					
Shoring Towers									
Truss Braces (tons)		128	36	36					
Install Roof (sf)		129840.736	55	105					
Curtain Wall/Spandrel (sf)		13102.478	46	65					


	Red	lesign					
Item Time	Item Units	Project Days	Sched Days				
183		28	28				
	21506.739	51	51				
	215502.236	86	118				
	428826.946	77	128				
	210.625	45	110				
	6118	55	55				
	2785.315	34	34				
	121887.955	141	205				
	51017.272	27	83				
	75794.894	32	98				
	49717.223	76	98				
	28860.084	34	91				
	35489.519	32	32				
	20857.139	13	32				
	566	96	96				
	69.333	19	19				
	352	11	11				
	242	69	69				
	139398.348	60	115				
	11879.334	42	59				

	Differe	ence (+/-)	
Item Time	Item Units	Project Days	Sched Days
68		7	7
	3725.145	8	8
	9574.879	3	4
	49659.788	8	13
	-48.625	-11	-26
	-171	-2	-2
	649.639	7	7
	-56725.181	-66	-96
	-10707.283	-6	-19
	-25046.567	-11	-34
	-9425.16	-15	-20
	-8449.126	-10	-27
	-158.735	-1	-1
	-976.034	-1	-3
	-29	-5	-5
	-9.333	-3	-3
	-80	-3	-3
		-19	
	-114	-33	-33
	-9557.612	-5	-10
	1223,144	4	6

Table 87: 4D Steel & Truss Erection Schedule

	Task Name	- Duration -	. Start 🔟	Finish
1	STRUCTURAL STEEL EAST 1	7 days	Mon 5/21/12	Wed 5/30/12
3	STRUCTURAL STEEL EAST 2 STRUCTURAL STEEL SOUTH 1	7 days	Wed 5/23/12	Fri 6/1/12 Fri 6/8/12
4	STRUCTURAL STEEL SOUTH 1	12 days 12 days	Wed 5/23/12 Tue 5/29/12	Wed 6/13/12
5	STRUCTURAL STEEL SOUTH 2	13 days	Tue 6/5/12	Thu 6/21/12
6	STRUCTURAL STEEL NORTH 2	12 days	Mon 6/11/12	Tue 6/26/12
7	STRUCTURAL STEEL SOUTH 3	12 days	Thu 6/14/12	Fri 6/29/12
8	STRUCTURAL STEEL NORTH 3 STRUCTURAL STEEL SOUTH 4	12 days	Wed 6/20/12	Fri 7/6/12
10	STRUCTURAL STEEL NORTH 4	8 days 8 days	Mon 6/25/12 Fri 6/29/12	Thu 7/5/12 Wed 7/11/12
11	BUILD-UP TRUSS 1 - PICK 1	1 day	Thu 7/12/12	Thu 7/12/12
12	BUILD-UP TRUSS 1 - PICK 2	1 day	Thu 7/12/12	Thu 7/12/12
13	SHORING TOWER TRUSS 1	35 days	Thu 7/12/12	Wed 8/29/12
14	ERECT TRUSS 1 - PICK 1	1 day	Fri 7/13/12	Fri 7/13/12
15	ERECT TRUSS 1 - PICK 2	1 day	Fri 7/13/12	Fri 7/13/12
17	BUILD-UP TRUSS 1 - PICK 3 ERECT TRUSS 1 - PICK 3	1 day	Mon 7/16/12 Mon 7/16/12	Mon 7/16/12 Mon 7/16/12
18	BUILD-UP TRUSS 2 - PICK 1	1 day	Tue 7/17/12	Tue 7/17/12
19	BUILD-UP TRUSS 2 - PICK 2	1 day	Tue 7/17/12	Tue 7/17/12
20	SHORING TOWER TRUSS 2	41 days	Tue 7/17/12	Wed 9/12/12
21	ERECT TRUSS 2 - PICK 1	1 day	Wed 7/18/12	Wed 7/18/12
22	ERECT TRUSS 2 - PICK 2	1 day	Wed 7/18/12	Wed 7/18/12
23	BUILD-UP TRUSS 2 - PICK 3 ERECT TRUSS 2 - PICK 3	1 day	Thu 7/19/12 Thu 7/19/12	Thu 7/19/12 Thu 7/19/12
25	ERECT BRACING T2-T1	1 day 8 days	Fri 7/20/12	Tue 7/31/12
26	STRUCTURAL STEEL NORTH MECH COURT	6 days	Fri 7/20/12	Fri 7/27/12
27	STRUCTURAL STEEL AUXILLIARY RINK WEST	5 days	Tue 7/24/12	Mon 7/30/12
28	BUILD-UP TRUSS 3 - PICK 1	1 day	Tue 7/31/12	Tue 7/31/12
29	BUILD-UP TRUSS 3 - PICK 2	1 day	Tue 7/31/12	Tue 7/31/12
30	SHORING TOWER TRUSS 3	41 days	Tue 7/31/12	Wed 9/26/12
31	ERECT TRUSS 3 - PICK 1 ERECT TRUSS 3 - PICK 2	1 day	Wed 8/1/12 Wed 8/1/12	Wed 8/1/12 Wed 8/1/12
33	BUILD-UP TRUSS 3 - PICK 2	1 day	Thu 8/2/12	Thu 8/2/12
34	ERECT TRUSS 3 - PICK 3	1 day	Thu 8/2/12	Thu 8/2/12
35	ERECT BRACING T3-T2	8 days	Fri 8/3/12	Tue 8/14/12
36	STRUCTURAL STEEL NORTHEAST ENTER CANOPY	5 days	Fri 8/3/12	Thu 8/9/12
37	STRUCTURAL STEEL EAST 1 ROOF	5 days	Tue 8/7/12	Mon 8/13/12
38	BUILD-UP TRUSS 4 - PICK 1	1 day	Tue 8/14/12	Tue 8/14/12
40	BUILD-UP TRUSS 4 - PICK 2 SHORING TOWER TRUSS 4	1 day 41 days	Tue 8/14/12 Tue 8/14/12	Tue 8/14/12 Wed 10/10/12
41	ERECT TRUSS 4 - PICK 1	1 day	Wed 8/15/12	Wed 8/15/12
42	ERECT TRUSS 4 - PICK 2	1 day	Wed 8/15/12	Wed 8/15/12
43	BUILD-UP TRUSS 4 - PICK 3	1 day	Thu 8/16/12	Thu 8/16/12
44	ERECT TRUSS 4 - PICK 3	1 day	Thu 8/16/12	Thu 8/16/12
45	ERECT BRACING T4-T3	8 days	Fri 8/17/12	Tue 8/28/12
46	STRUCTURAL STEEL EAST 2 ROOF BUILD-UP TRUSS 5 - PICK 1	6 days	Fri 8/17/12 Tue 8/28/12	Fri 8/24/12 Tue 8/28/12
48	BUILD-UP TRUSS 5 - PICK 2	1 day	Tue 8/28/12	Tue 8/28/12
49	SHORING TOWER TRUSS 5	41 days	Tue 8/28/12	Wed 10/24/12
50	ERECT TRUSS 5 - PICK 1	1 day	Wed 8/29/12	Wed 8/29/12
51	ERECT TRUSS 5 - PICK 2	1 day	Wed 8/29/12	Wed 8/29/12
52	BUILD-UP TRUSS 5 - PICK 3	1 day	Thu 8/30/12	Thu 8/30/12
53	ERECT TRUSS 5 - PICK 3 ERECT BRACING T5-T4	1 day	Thu 8/30/12 Fri 8/31/12	Thu 8/30/12 Wed 9/12/12
55	STADIA STEEL EAST 1-2	8 days 3 days	Fri 8/31/12	Wed 9/5/12
56	STADIA STEEL SOUTH 1 & NORTH 1	3 days	Thu 9/6/12	Mon 9/10/12
57	BUILD-UP TRUSS 6 - PICK 1	1 day	Wed 9/12/12	Wed 9/12/12
58	BUILD-UP TRUSS 6 - PICK 2	1 day	Wed 9/12/12	Wed 9/12/12
59	SHORING TOWER TRUSS 6	31 days	Wed 9/12/12	Wed 10/24/12
60	ERECT TRUSS 6 - PICK 1	1 day	Thu 9/13/12	Thu 9/13/12
62	ERECT TRUSS 6 - PICK 2 BUILD-UP TRUSS 6 - PICK 3	1 day	Thu 9/13/12 Fri 9/14/12	Thu 9/13/12 Fri 9/14/12
63	ERECT TRUSS 6 - PICK 3	1 day	Fri 9/14/12	Fri 9/14/12
64	ERECT BRACING T6-T5	8 days	Mon 9/17/12	Wed 9/26/12
65	PRECAST STADIA MAIN ARENA - GEN PUBLIC/CLUB	53 days	Mon 9/17/12	Thu 11/29/12
66	BUILD-UP TRUSS 7 - PICK 1	1 day	Wed 9/26/12	Wed 9/26/12
67	BUILD-UP TRUSS 7 - PICK 2	1 day	Wed 9/26/12	Wed 9/26/12
68 69	SHORING TOWER TRUSS 7 ERECT TRUSS 7 - PICK 1	21 days	Wed 9/26/12 Thu 9/27/12	Wed 10/24/12 Thu 9/27/12
70	ERECT TRUSS 7 - PICK 1 ERECT TRUSS 7 - PICK 2	1 day 1 day	Thu 9/27/12	Thu 9/27/12
71	BUILD-UP TRUSS 7 - PICK 3	1 day	Fri 9/28/12	Fri 9/28/12
72	ERECT TRUSS 7 - PICK 3	1 day	Fri 9/28/12	Fri 9/28/12
73	ERECT BRACING T7-T6	8 days	Mon 10/1/12	Wed 10/10/12
74	BUILD-UP TRUSS 8 - PICK 1	1 day		Wed 10/10/12
75	BUILD-UP TRUSS 8 - PICK 2	1 day		Wed 10/10/12
76 77	SHORING TOWER TRUSS 8 ERECT TRUSS 8 - PICK 1	11 days 1 day		Wed 10/24/12 Thu 10/11/12
78	ERECT TRUSS 8 - PICK 1	1 day	Thu 10/11/12	Thu 10/11/12
79	BUILD-UP TRUSS 8 - PICK 3	1 day	Fri 10/12/12	Fri 10/12/12
80	ERECT TRUSS 8 - PICK 3	1 day	Fri 10/12/12	Fri 10/12/12
81	ERECT BRACING T8-T7	8 days		Wed 10/24/12
82	STADIA STEEL SOUTH 2-3	2 days	Thu 10/25/12	
83	STADIA STEEL NORTH 2-3	2 days	Fri 10/26/12	Mon 10/29/12
84	STRUCTURAL STEEL WEST 1 STRUCTURAL STEEL WEST 2	10 days	Wed 11/14/12 Mon 11/19/12	Wed 11/28/12
86	PRECAST STADIA MAIN ARENA - STUDENT/LOGE	10 days 9 days	Mon 11/19/12 Thu 11/29/12	Mon 12/3/12 Tue 12/11/12
87	PRECAST STADIA MAIN ARENA - STODENT/LOGE PRECAST STADIA AUXILIARY RINK	4 days	Tue 12/4/12	Fri 12/7/12
88	FOUNDATIONS SOUTH AUX RINK	9 days	Mon 12/10/12	
	STRUCTURAL AUXILIARY RINK ROOF	9 days		Mon 12/24/12
89	STREET THE TOTAL			

Table 88: Steel & Truss Erection Short Interval Project Schedule (SIPS)

APPENDIX J: Ice Generation System Research

Improving Efficiency in Ice Hockey Arenas

By Laurier Nichols, R.E., Fellow ASHRAE

unicipal arenas in Canada are built mainly for hockey, but they also house other activities and special events. In most small municipalities, arenas are the public buildings that have the highest annual energy use and consumption.

Approximately 450 arenas operate throughout the province of Quebec. A general survey1 of several arenas similar in size shows that for a standard ice arena, the energy use is 1,500,000 kWh/year. The most energy-efficient arenas use approximately 800,000 kWh/year, while less efficient ones consume nearly three times that much energy at 2,400,000 kWh/year.

an arena, we must define what is meant by standard arena. For the purpose of this article, an arena is used for eight months

To better understand the energy use of per year with activities beginning in August (for hockey training) and generally ending in April. The main space is the amphitheatre with the ice sheet.

16 ASHRAE Journal

ashrae.org

The average amphitheatre is 24,000 ft² (2230 m2) (including stands for 500 people) with the ice sheet covering 16,327 ft² (1517 m²) (standardized 85 ft × 200 ft [26 m × 61 m] National Hockey League ice rink). Other spaces consist of locker rooms, 2,800 ft2 (260 m2); mechanical and electrical rooms, 600 ft2 (56 m2); ice resurfacer machine room, 300 ft2 (28 m²); offices and meeting rooms, 2,500 ft² (232 m²); canteen and kitchen area, 1,500 ft2 (139 m2); main entrance hall, 1,500 ft2 (139 m2); and service rooms 800 ft2 (74 m2). Overall, the total building area is approximately 34,000 ft2 (3159 m²).

Typically, arenas are used 18 hours per day on weekends and 12 hours per day during weekdays. A standard arena is

About the Author

Laurier Nichols, P.E., is vice presidentprojects at Dessau Inc. in Montreal.

June 2009

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

used approximately 100 hours per week. The ice is resurfaced approximately 65 times per week.

The lighting of a nonefficient amphitheatre uses approximately 32 kW for most ice activities. Most of the lighting fixtures are installed above the ice rink (1.9 W/ft2 [20.5 W/ m²]) and lower density lighting fixtures are installed above the stands (0.7 W/ft2 [7.5 W/m2]). Elsewhere in the building, the average lighting power is approximately (2 W/ft² [21.5 W/m²]) for a total of 15 kW. Exterior lighting could amount to 2 kW.

The ventilation requirements of the amphitheater are approximately 10,000 cfm (4719 L/s), but the author's observations show that ventilation is not continuously used. Ventilation of an amphitheater is used for 15 minutes after each ice resurfacing to evacuate the pollution created by the propane gas combustion of the ice resurfacing machine. Several arenas use pollution detectors to monitor the ventilation use, which explains why the ventilation is not in continuous operation. Other ventilation systems with a total of fresh air of 7,000 cfm (3304 L/s) are used for the other spaces.

The refrigeration load of a standard arena, operating for eight months, is 70 tons (246 kW) of cooling using an average 110 hp (82

kW) for the refrigeration compressors. The brine pump (850 gpm [54 L/s]) generally uses a 25 hp (19 kW) motor. The refrigeration equipment is in use throughout the eight months of operation.

Heating is provided either by natural gas, propane gas, oil or electricity. In the province of Quebec, several arenas are heated with electricity, but most arenas use a dual source of energy (either gas and electricity or oil and electricity). Stands are heated in most municipal arenas. When heated, the stands are frequently

kept to a comfort level with radiant gas units.

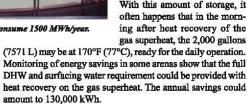
As an exercise for evaluating the energy savings measures, let's assume that we have a nonefficient arena with an annual energy use of 1,950,000 kWh. The total energy consumption could be divided into the following uses as shown in Figure 1.

Several energy-saving measures could be implemented in an existing building such as this one or when planning a new building.

Heat Recovery on Exhaust

In northern regions, the first energy saving measure to implement is usually the heat recovery of energy leaving the building in the exhausted air. This can be used for preheating the outside air being introduced for ventilation. This measure has a significant impact on the whole energy balance of the building. For instance, in this typical building, the energy savings with the use of a thermal wheel at 75% efficiency could reach 250,000 kWh. This savings will appear on the heating usage.

Subfloor Heating Using Heat Recovery


When an arena is used for more than seven months, it is important to eliminate the possibility of freezing the subsoil. In fact, the concrete slab under ice rinks had to be replaced in several arenas because of damages created by the formation of frost in the soil under the floor. To eliminate this problem, 4 in. (102 mm) of polystyrene insulation is installed under the concrete slab of the ice rink. Heating must be provided in the soil under the insulation to prevent freezing. The average heating requirement amounts to 20,500 Btu/h to 27,300 Btu/h (6 kW to 8 kW). It is used for the full eight months of operation. The heating of the subfloor could be provided by the heat rejection of the condenser of the refrigeration equipment.

As this is a low-temperature requirement, it could be provided at a condensing temperature that could be limited at 70°F (21°C) during winter months. The potential savings is equal to the total heat requirement of 35,000 kWh.

DHW and Surfacing Water Requirement

Domestic hot water and water used by the ice resurfacer require a higher temperature. The refrigeration gas superheat

available at the outlet of the compressor offers an excellent opportunity for the heating of DHW. The problem with DHW and ice surfacing water is the wide variation of daily demand. Therefore, water storage is required. Successful preheating of domestic water is achieved with a 2,000 gallon (7571 L) water storage tank (often two tanks of 1,000 gallons (3785 L) each). With this amount of storage, it often happens that in the morning after heat recovery of the

Brine Pump

Several tests were conducted in the Montreal area by modifying the distribution of the brine in the floor slab under the ice. The modified distribution used a four-pass arrangement instead of the conventional two-pass arrangement. This modification had a major impact on the energy use of the brine pump. It cut the energy requirement by 50%. Tests conducted showed the ice quality was the same and that no noticeable change in the activities carried out on the ice was reported during the test period. It was once reported that the four-pass distribution was better than the two-pass distribution. This specific comment was for a central refrigeration plant for two ice sheets,

June 2009 ASHRAE Journal 17 one being with the four-pass distribution and the other with the two-pass distribution. Because of a faulty installation (too much concrete over the plastic pipes), the operator had to lower the brine temperature when starting the two-pass ice sheet. The ice quality was good for the four-pass ice sheet with a higher temperature at $4^{\circ}F$ (- $16^{\circ}C$).

The thickness of concrete over the plastic pipes and the thickness of the ice over the slab have a major impact on the performance of heat exchanges. It is important that the concrete slab be leveled from within so that the ice thickness is limited to 1 in. (25 mm). The thickness of concrete over the plastic pipes should also be limited to 1 in. (25 mm). A 4 in. (102 mm) thickness of concrete means that the brine temperature must be lowered by 10°F (5.5°C).

Some questions remain on the brine velocity in the pipes. Should the brine flow be in the turbulent mode? Often, the heat transferred from the brine to the ice is low. A standard arena uses 53,000 ft (16 154 m) of plastic polyethylene pipes for the heat transfer with the ice. If we assume 70 tons (246 kW) for the refrigeration, it means that the heat transfer amounts to 16 Btu/ft (15 W/m) of pipe. This means that a brine flow in the laminar mode would have less impact on the heat transfer. The resistive film created by a laminar flow has more impact in a heat exchanger where the heat transfer is 1,000 Btu/ft (961 W/m) of pipe.

The four-pass arrangement generates an energy savings of 70,000 kWh on the pump's energy requirements and 20,000 kWh on the refrigeration equipment (lower heat generated by the brine pump). This represents annual savings of \$6,000 for an arena in the Montreal area.

Heat Recovery for Heating

The refrigeration equipment of an arena could also act as a heat pump. All heat removed from the ice could be used for heating spaces and the outside air for ventilation purposes. Although heat is recovered from the exhaust, residual heating is still required for ventilation. It is easy to use rejected heat from the refrigeration equipment as it does not require high condensation temperature. Moreover, the heat recovery does not negatively impact on the performance of the refrigeration compressors.

Heat recovery condensers could be used for heating of space. Heating equipment would have to be selected for operation at low temperatures, so it does not require high condensation temperature (more than 100°F [38°C]).

When full heat recovery is achieved on the refrigeration equipment, almost all space heating, as well as ventilation heating, could be provided. This would represent annual savings of 475,000 kWh.

Low-e Ceiling

The refrigeration load of an ice arena is a complex mix of radiation and convection. Studies show that the radiation has a major impact on the refrigeration load. It is possible to lower the radiation exchange between the ice sheet and the ceiling with the use of a low-e ceiling by installing a high reflection (low-e) aluminized plastic sheet under the structural trusses of the ceiling. This addition will lower the radiation exchange with the ceiling, but it will increase the radiation exchange from the perimeter

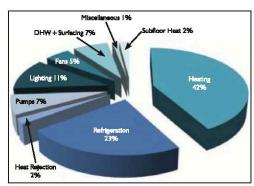


Figure 1: Inefficient arena (1,950,000 kWh).

stands because of the higher reflection. An ASHRAE research project is currently under way to help understand the radiation exchange process that occurs in an arena. Monitoring of the addition of a low-e ceiling shows a 15% savings on the refrigeration equipment, which translates into annual savings of 67,500 kWh.

Efficient Lighting System

Improvement in the lighting efficiency could be used to lower the energy use of an arena. Lighting fixtures have a large proportion of radiation components and, when installed over the ice sheet they generate a refrigeration load. Creative lighting systems could be used for arenas. Some experiences with T-5 or T-8 fluorescent lighting systems were successful as they create the possibility to modulate the lighting level according to the activities taking place on the ice. Lighting level can be adapted to the type of activity. It is easy to understand that a child below 10 years old won't shoot the puck at 100 mph (45 m/s) as a professional hockey player would. A high lighting level is not always needed. Efficient lighting level could generate annual savings of more than 50,000 kWh per year.

Efficient Refrigeration Equipment

Several energy-efficiency measures could be implemented on the refrigeration equipment such as: modulation of the condensing pressure, liquid subcooling, electronic expansion valves, flooded-type evaporator, variable frequency drive on compressor, thermal storage, etc. Simulation of the operation of the refrigeration equipment is the best tool to evaluate the advantages of its improvement. Lowering the energy requirement of the refrigeration equipment is often not possible when heat recovery is required for heating at a higher condensing pressure. Liquid subcooling is required with an alternative refrigerant such as R-410 or R-507. Lowering the condensing pressure will improve the refrigeration cycle, but a higher condensing pressure should be used if heat recovery is required.

It is always better to extract heat from the refrigeration equipment when heat is required than trying to improve the refrigeration cycle itself. Improving energy efficiency of an existing arena was achieved without lowering the condensing pressure.

ashrae.org June 2009

| Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

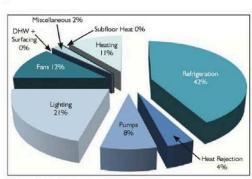


Figure 2: Modified arena (8,40,000 kWh).

The total energy was lowered by almost half of the energy use (from 1,600,000 kWh to 820,000 kWh) by heat recovery used for heating requirements. Improvement on the refrigeration equipment is possible but one should consider the building as a whole system and not focus only on the refrigeration.

Improved refrigeration could lower the energy use by 30%, which represents annual savings of 120,000 kWh. Energy-efficient refrigeration equipment is a must when the rejected

heat is recovered by a water loop heat pump instead of a direct condenser heat recovery system.

Energy Savings

When all of the previously described energy efficiency improvement measures are implemented (with 20% improvement on the refrigeration), the standard arena uses less energy. An annual savings of 57% is achievable.

The total energy consumption of the improved arena (8,40,000 kWh) could be divided into the uses shown in Figure 2.

Conclusion

The analysis of energy efficiency for arenas should consider the building as a whole with all its mechanical systems and architectural systems. Because a refrigeration load exists for the ice rink along with other needs for heating, the refrigeration system should act as a heat pump to supplement the heating requirements. For many arenas, proper heat recovery could lead to a 50% annual energy savings.

References

1. Lavoie, M.R., R. Sunyé, D. Giguère. 2000. "Potentiel d'économie d'énergie en réfrigération dans les arénas du Québec." ("Potential for energy savings in arenas of the Province of Quebec," available in French only.) CANMET Energy Technology Centre. ●

Technical Guidelines of an Ice Rink

INTERNATIONAL ICE HOCKEY FEDERATION

Technical guidelines of an ice rink

Chapter 3

3.1 General introduction

Ice rink facilities share all the same concerns: energy usage, operating costs and indoor climate. Ice rink design and operation are totally unique and differ in many ways from standard buildings. Thermal conditions vary from -5 °C on the ice surface to +10 °C in the stand and +20 °C in the public areas like dressing rooms and offices. High humidity of indoor air will bring on corroding problems with steel structures, decay in wooden structures and indoor air quality problems like fungi and mould growth etc. Obviously there are special needs to have technical building services to control the indoor climate and energy use of an ice-rink facility. Advanced technology can reduce energy consumption by even 50 % and thus decrease operating costs in existing and proposed ice rink facilities while improving the indoor climate.

Energy costs and concern about the environment sets high demands for the technical solutions, without effective solutions the operational (energy, maintenance, replacement) costs will increase and short service life time of such a system is expected from the environmental point of view. Potentially a lot of savings can be made if the facilities are got operating as energy-efficiently as possible. This will require investment in energy-saving technology and in raising energy awareness on the part of ice rink operators.

The basic technical elements of a well-working facility are:

- · Insulated walls and ceiling
- Efficient refrigeration plant
- Mechanical ventilation
- Efficient heating system
- Air dehumidification
- 1) Insulated walls and ceiling makes it possible to control the indoor climate regardless of the outdoor climate. In an open-air rink the operation is conditional on the weather (sun, rain, wind) and the running costs are high. Depending of the surroundings there might also be noise problems with the open-air rink—traffic noise may trouble the training or the slamming of the pucks against the boards may cause noise nuisance to the neighbourhood. Ceiling only construction helps to handle with sun and rain problems but may bring about maintenance problems in the form of "indoor

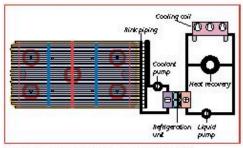
rain": humid air will condensate on the cold inner surface of the ceiling and the dripping starts. The ceiling is cold because of the radiant heat transfer between the ice and the ceiling i.e. the ice cools down the inner surface of the ceiling. Though there are technical solutions to minimize the indoor rain problem (low emissive coatings) the ceiling only solution is still subjected to weather conditions and high running costs.

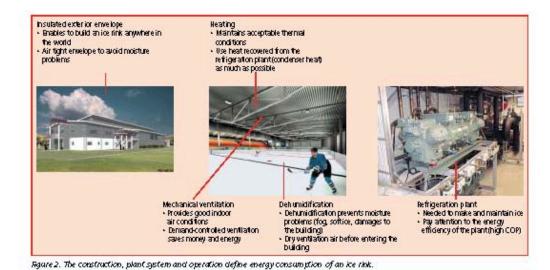
- 2) The refrigeration plant is needed to make and maintain ice on the rink. Refrigeration plant includes the compressor(s), the condenser(s), the evaporator(s), and rink pipes. The heat from the rink is "sucked" by the compressor via the rink pipes and the evaporator and then released to the surrounding via the condenser. The heat from the condenser can be used to heat the ice rink facility and thus save considerably energy and money. Refrigeration plant is the main energy consumer in the ice rink facility. Compressors, pumps and fans needed in the refrigeration system are normally run by electricity and their electricity use may cover over 50 % of the total electricity use of an ice rink facility
- 3) Mechanical ventilation is necessary to be able to control the indoor air quality and thermal as well as humidity conditions inside the ice rink. Ventilation is needed both in the public spaces (dressing rooms, cafeteria, etc.) and in the hall. If you ever have visited a dressing room when the ventilation is off you will realize the necessity of the proper ventilation: the stink of the outfit of the hockey players is unthinkable. Inadequate ventilation will cause also health problems in the hall. To be energyefficient air renewal must be well controlled. This means that the ice rink enclosure should be airtight so that there are no uncontrollable air infiltration through openings (doors etc.) and roof-to-wall joints. Air infiltration will increase energy consumption during the warm and humid seasons related to refrigeration and dehumidification and during the cold seasons this is associated with space heating. This leads us to the fourth basic demand: the ice rink facility must be heated. Unheated ice rink is freezing cold even in warm climates and humidity control of the air becomes difficult.

15

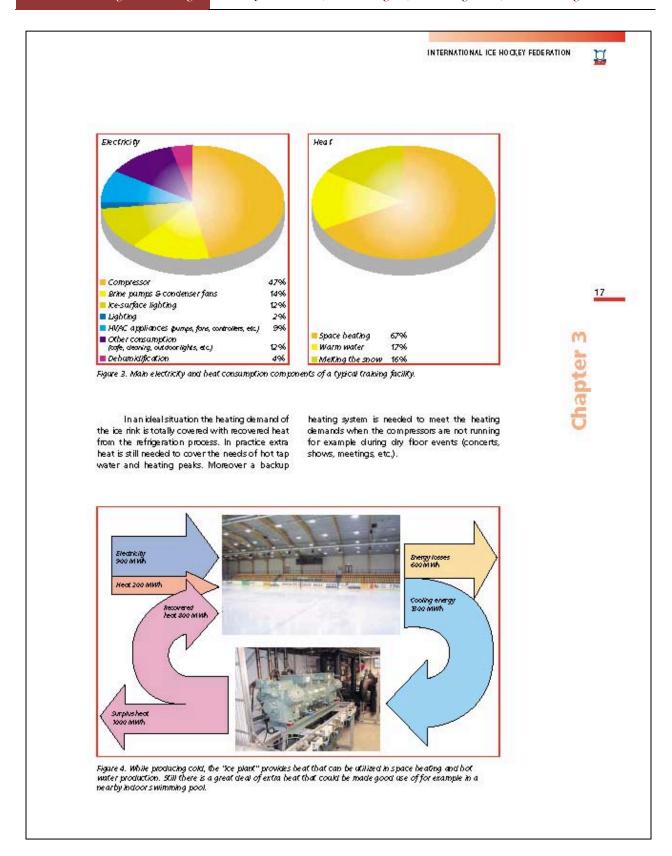
Chapter 3

INTERNATIONAL ICE HOCKEY FEDERATION




Figure 1. Refrigeration plant, indirect cooling system.

16


- 4) Ventilation offers also a means to heat the ice rink. Heating the ice rink with air recessitates the use of re-circulated air and that the ventilation unit is equipped with heating coil(s). Remarkable energy-savings can be achieved when using waste heat of the refrigeration process to warm up the air.
- 5) The dehumidification plant is needed in well-working facility to dry the rink air. Broess moisture in indoor air will cause corrosion of metal structures, rotting of wooden structures, fungiand mould growth, increased energy consumption and ice quality problems.

Energy consumption is in the key role when speaking of the life cycle costs and above all the environmental load of the facility during its life cycle. The key to the effective utilization of the energy resources in new as well as in retrofit and refurbishment projects is in the consciousness of the energy-sinks and the various parameters affecting the energy consumption.

The construction, plant system and operation define the energy consumption of an ice rink. The construction characteristics are the heat and moisture transfer properties of the roof and walls, as well as air infiltration through cracks and openings in the building envelope. The structure of the floor is also important from the energy point of view. Plant characteristics include the refrigeration. ventilation, dehumidification, heating, lighting and ice maintenance systems. The operational characteristics are the length of the skating season, air temperature and humidity, ice temperature, supply air temperature and fresh air intake of the air-handling unit as well as the control- and adjustment parameters of the appliances. Figure 3 shows the energy spectrums of typical training rinks and figure 4 illustrates the energy flows of a typical small ice rink.

HPR Integrated Design | Penn State Ice Arena | University Park, PA

INTERNATIONAL ICE HOCKEY FEDERATION

Layout

Four of the six dressing rooms with showers are under the seat along the long side of the hall and the other two dressing rooms at the end of the hall. On top of these two dressing rooms there are office rooms, lecture room, cafeteria, TV stand and air conditioner. Technical room (refrigeration unit) is placed in a separate container outside of the rink.

Structures

The mast-supported grid constructure of the rink is made of glue laminated timber. The roofing and the walls are made of polyurethane elements. To improve the energy efficiency of the rink the air tight polyurethane elements are equipped with low emissivity coating laminated on the indoor surface of the elements. The elementshave also acoustic dressing which improves the acoustic atmosphere of the rink. The facades are made of profiled metal sheets.

In this manual we will concentrate on a structural system of a grid supported by columns and the materials for this structural system can be divided into four main categories:

- Steelstructures
- Wood structures
- · Reinforced concrete structures
- Mix material structures of steel, wood and/or concrete

3.4.1 Structural system as used in the IIHF prototype

The roof structure consists of steel trusses supported each by two concrete columns. At support points the bottom boom of the truss bears on an elastomer ic bearing pad botted to the supporting concrete column. The whole roof structure of steel (see roofing 3.3.2) is floating on top of the concrete framework. The concrete columns are mounted ridged to the concrete foundations.

Regarding to the region of the planned new ice rink, the horizontal loads of the roof structure, like snow are highly affecting when choosing the most economical structural system. If the snow loads are not remarkable, the steel trusses could easily cost efficiently be spanned over the spectator stand and the dashed board, using the span length like 40 to 45 meters and concrete column raster of 6 to 8 meters. A minimum free space between the ice surface and the bottom of steel trussesshould be at least 6 meters.

In order to avoid serious problems with humidity, like corrosion etc. the mechanical and electrical plant must be equipped with a dehumidification system.

3.4.2 Envelope, roofing

The main function of an ice rink envelope is air tightness and not particularly thermal insulation. The envelope structure can be done most efficiently to fulfil only that one main characteristic.

23

Chapter 3

Materials and structural system

Figure 5. Material features of main supporters.

If the idea of a modular system is found possible and reasonable, the best flexibility in use with either steel or wood frame structures. However through careful and skilled engineering the later changes of the supporting structure are also possible with all other materials and systems.

In the design phase all structural capabilities of the building for later enlargement should be defined in combination with the size of the plot, traffic situation and possible changes in the surrounding.

By becoming aware of the special features of an ice rink, there are several possibilities to optimise the ice rink construction costs that will also lower the later operational costs. Most used roofing structures consist of following layers:

- Profiled, load bearing steels sheets
- Vapour barrier
- Thermal insulation (10 cm to 15 cm rock wool)
- Water insulation

Figure 6. Typical roof structure.

3.4.3 Envelope, walls

The outside wall structure of an ice rink is commonly also based on the idea of air tightness and the simplest walling is done by using different metal sheet panels. These panels are simple, prefabricated sandwich elements, that have inside a core of thermal insulation of rock wool or polyurethane and both sides covered with metal sheets.

These panels also allow later changes of the envelope very easily and with rather low additional costs.

These metal sheet panels are delivered with a long range of length up to 8 meters each, in large scale of different colours and surface treatment. A harmful aspect by using these metal sheet panels is a rather poor resistance against mechanical exertion like hits of the hockey pucks inside or vandalism.

Therefore it is recommended to use in a lower partition of outside wall sandwich elements of concrete and replace them over 2.5 meter height with metal sheet panels.

3.4.4 Ice pad structure

Perhaps the most special structure in an ice rink is the ice pad. The ice pad consists of ground layers below the pad, thermal insulation, piping and pad itself. New technologies have made possible the use of new materials and technical solutions in these structures, where at the same time the energy efficiency and construction costs could be optimised.

The most common surfacing materials is:

Concrete

However sand surface is cheapest and fairly energy economical because of the good heat transfer characteristics but the usability is limited to ice sports. Asphalt surfaces are suitable for some special needs, for example in the case that the facility is used for tennis off the ice sport season. Asphalt is cheaper than concrete but the refrigeration energy requirement is higher.

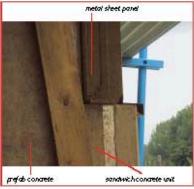


Figure 8. Typical wall structure.

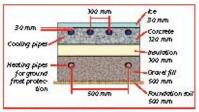


Figure 9. Typical ice pad construction.

Rink pipe material (plastic/metal) and space sizing are questions of optimisation of investments vs. energy. The cooling pipes are mounted quite near the surface, in a concrete slab the mounting depth is normally 20–30 mm and the mounting space between the pipes is 75–125 mm. The rink pipes are connected to the distribution and collection mains, which are laid along the rink short or long side outside the rink Rink pipes are laid in U-shape and they are mounted to the surfacing layer by simply binding the pipes directly to the concrete reinforcement or to special rails.

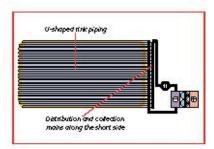


Figure 10. Callectors along the short side of the ice rink.

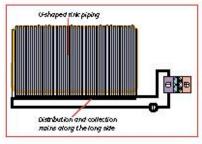


Figure 11. Collectors along the long side of the ice rink.

Figure 12. Plastic rink piping connections to the distribution and the collection mains (thermally insulated).

3.5.1 Refrigeration plant

Refrigeration plant is fundamental to the ice-rinkfacility. Much used, but true, phrase is that the refrigeration unit is the heart of the ice-rink. Almost all of the energy-flows are connected to the refrigeration process in one way or another. It is quite normal that the electricity consumption of the refrigeration system accounts for over 50 % of the total electricity consumption and the heat loss of the ice can be over 60 % of the total heating demand of an ice-rink.

In the design stage, when choosing the refrigeration unit one has to consider the economics, energy usage, environment, operation, maintenance and safety.

The design of the refrigeration plantican be either so-called direct or indirect system. In a direct system, the rink piping works as the evaporator, whereas an indirect system is comprised of separate evaporator (heat exchanger) and the ice padis indirectly cooled by special coolant in closed circulation loop. The energy efficiency of the direct system is in general better than the efficiency of the indirect system. On the other hand the first cost of the direct system is higher than that of the indirect system. Moreover indirect systems can't be used with for example ammonia in several countries because of health risks in the case of refrigerant leaks. Table 2 summarises the advantages and disadvantages of the different systems.

3.5 Mechanical and electrical plant

The effective utilization of the energy resources has become an important aspect in the design of new facilities. There are many different energy conservation measures that can be incorporated in the planning stage. In planning the hardware configuration and construction of an ice rink, it is important to consider the types of activities, special requirements and interest of the various user groups in question. Table 1 summarise the main indoor air design values, which can be used in designing technical building services. It is important to set these values already in the pre-design stage in order to control the demands.

	Air temper the rink sp			Max.relative furnicity of the rinkspace (%)	Min. fresh air intak Vs./occupant			
	kink(at 1.5 m height)	Tribune (operative)						
Hockey :								
- game	+6	+10.+15	-5	70	49 / spectator			
- training	+6	+6. +15	-3	70	12 / player			
Figure								
- competition	+12	+10.+15	-4	70	48 / spectator			
- training	+6	+6. +15	-3	70	12 / skater			
Other	+18	+18	•		9 / person			
					100000000000000000000000000000000000000			

Indoor air design values for small ice rink (rink space).

INTERNATIONAL ICE HOCKEY REDERATION

- + Energy efficiency + Simple
- Not possible with certain refrigerants (ammonia)
- Installation costs
 Need of professional skills in design and in installing

Features of direct and indirect refrigeration plant.

- + Use of factory made refrigeration units + Small refrigerant filling (environmentally positive)
- + Suitable to any refrigerant
- Lower energy efficiency than with direct system

26

In most cases the refrigeration plant comprises the refrigerant circuit refrigerates an indirect. system i.e., the floor by a closed brine dircuit rather. than directly. The refrigerant used in the compressor loop should be environmentally accepted, for example natural substances like ammonia (NH₄) and carbon dioxide (CO₂) or HFC refrigerants such as R134a, R404A and R407A. The tendency is to favour in natural substances of HRCs. In choosing the refrigerant the country-specific regulations must be taken into account. The operational aspect is to equip the compressor with reasonable automation, which enables demand-controlled running. of the system. In addition, the safety factors should be incorporated in the design of the machine room.

From the energy point of view it is a matter of course that the compressor unit should be as efficient as possible, not only in the design point but also under part-load conditions.

Indoor climate - air temperature - ceiling temperature and n air humiditu ice temperature 0 Refrigeration unit evaporating and condensing temperatures kethideness stab thickness and thermal efficiency properties pipe material and sizing compressor type - sizing - refrigerant cooling liquid properties frost insulation · frost protection heating

Figure 12. Refrigeration unit and related energy flows.

When estimating the energy economy of the system it is essential to focus on the entire system and not only on one component alone. The refrigeration plant is an integral part of the ice rink, Figure 12.

Design and dimensioning aspects

The refrigeration plant is dimensioned according to cooling load and the required evaporation and condenser temperatures. For a standard single ice rinkapproximately 300-350 kW of refrigeration capacity is adequate.

The refrigeration capacity is normally sized according to the heat loads during the ice making. process. The dimensioning cooling load during the freezing period is comprised of the following: components:

- · Cooling the ice pad construction down to the operating temperature in required time. Needed cooling capacity depends on the temperature of the structures at the beginning of the freezing and the required freezing time (normally 48 hours).
- Cooling the temperature of the flooded water to the freezing temperature (0 °C) and then freezing the water to form the ice and to cool the temperature of the ice to the operating temperature. The freezing capacity depends on the temperature of the water, the operating temperature of the ice and the required freezing time (48 hours).
- Heat radiation between the rink surface and the surrounding surfaces. Cooling capacity depends on the surface temperatures during the freezing. period.
- Convective heat load between the rink surface. and the air. Cooling capacity depends on the air and rink surface temperatures both the air stream velocity along the rink surface during the freezing period.
- · Latent heat of the condensing water vapour from the air to the rink surface. Cooling capacity

INTERNATIONAL ICE HOCKEY FEDERATION

depends on the air humidity (water vapour pressure) and the surface temperature of the rink during the freezing period.

- Radiation heat load on rink surface during the freezing period (lights etc.).
- · Pump-work of the coolant pump.

3.5.1.1 Refrigeration unit

Refrigeration unit is comprised of many components compressor(s), evaporator, conclenser, and expansion valve and control system.

The function of the compressor is to keep the pressure and temperature in the evaporator low enough for the liquid refrigerant to boil off at a temperature below that of the medium surrounding the evaporator so that heat is absorbed. In the compressor the vapour is raised to high pressure and high enough temperature to be above that of the cooling medium so that heat can be rejected in the condenser. After the condensation the liquid refrigerant is throttled in the expansion valve back to the pressure of the evaporator. In other words the compressor "pumps"

Figure 13. Two screw compressors.

iter 3

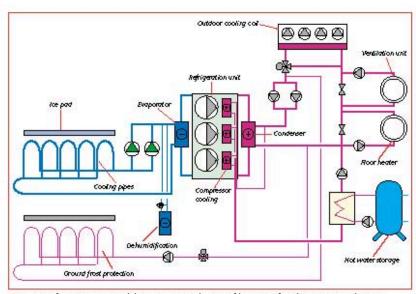
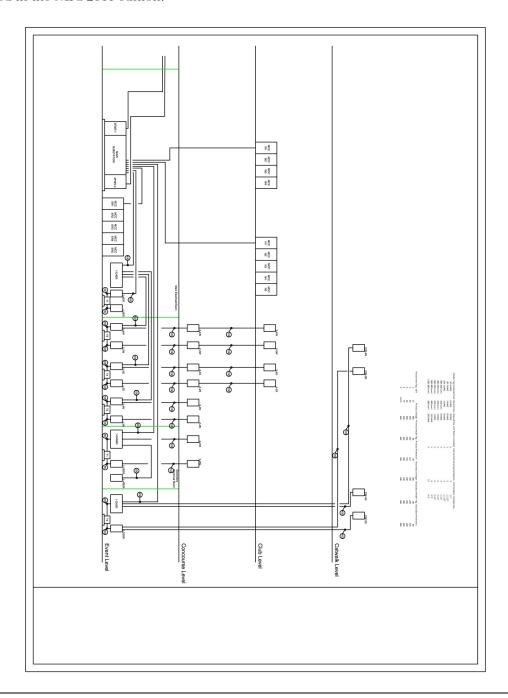



Figure 14. Refrigeration plant with heat recovery: preheating of hot water, floor heating and air heating.

APPENDIX K: Normal Building Electrical System

For the purpose of this BIM thesis, only the main normal distribution power was investigated. To this affect the entire building's normal power distribution was modeled in the BIM model and coordinated with the other disciplines. From the coordinated model a riser diagram was produced to visualize the electrical system in a simpler manner. This riser was then tag with the appropriate feeder tags after a voltage drop calculation was done. The electrical system was designed to meet all relevant codes stated in the NEC 2011 edition.

	IVIAXIMUM Feeder Length	565.6	692.8	866.1	1215.5	1215.5	200.0	1367.4	1443.4	1823.3	1640.9	1896.2	Maximum Feeder Length	(5% VD) (ft)	245 086 4873	300.2309469	375.2886836	526.7209594	526.7209594	526.7209594	592.5610794	625.4811393	790.0814392	711.0732952	821.6846967
(voltage Drop @	10.6	8.7	6.9	4.9	4.9	4.9	4.4	4.2	3.3	3.7	3.2	/oltage Drop @	250 feet	10.6085	8.66	6.928	4.9362	4.9362	4.9362	4.387733333	4.1568	3.2908	3.656444444	3.164230769
	voltage Drop @	21.2	17.3	13.9	6.6	6.6	6.6	8.8	8.3	9.9	7.3	6.3	Voltage Drop @ \	SOO feet	21 217	17.32	13.856	9.8724	9.8724	9.8724	8.775466667	8.3136	6.5816	7.312888889	6.328461538
(Volugge Drop @ Volugge Drop @ Volugge Drop @ 1000 feet 500 feet	42.4	34.6	7.72	19.7	19.7	19.7	17.6	16.6	13.2	14.6	12.7	Voltage Drop @ Voltage Drop @ Voltage Drop @	1000 feet	A2 A2A	34.64	27.712	19.7448	19.7448	19.7448	17.55093333	16.6272	13.1632	14.62577778	12.65692308
	current in conductors (amps)	50	80	100	200	200	200	267	300	400	444	385	Current in Conductors	(same)	(Sding)	8 8	100	200	200	200	266.666667	300	400	444,444444	384.6153846
	Conductor Resistance	0.490	0.250	0.160	0.057	0.057	0.057	0.038	0.032	0.019	0.019	0.019	Conductor Resistance	(ohms/1000ft)	0.40	0.25	0.16	0.057	0.057	0.057	0.038	0.032	0.019	0.019	0.019
	Voltage	480	480	480	480	480	480	480	480	480	480	480	3 phase	Voltage	200	208	208	208	208	208	208	208	208	208	208
Voltage Drop	Feeder Tag Conductor	50 6 AWG	80 3 AWG	100 1 AWG	200 250 kcmil	400 250 kcmil	600 250 kcmil	800 400 kcmil	1200 500 kcmil	2000 900 kcmil	4000 900 kcmil	5000 900 kcmil		Feeder Tag Conductor	20404	80 3 AWG	100 1 AWG	200 250 kcmil	400 250 kcmil	600 250 kcmil	800 400 kcmil	1200 500 kcmil	2000 900 kcmil	4000 900 kcmil	5000 900 kcmil

BIM THESIS PROPOSAL

HPR Integrated Design

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

	Dulana a V	des es Duines	Faraday Tara Dalamay I				Doneston
ransformer Tag kVA	Primary Vo 15	oitage Primar 480	y Feeder Tag Primary F 80	Protection Second 60	ary Voltage Secondar 208	y Feeder Tag Secondary 80	Protection 8
1 2	30	480	100	110	208	200	15
3	40	480	200	150	208	200	20
4	75	480	400	300	208	400	40
	112.5	480	400	450	208	600	60
180/277V Feeders							
	Neutral Size	Ground Size	# of Wires in Conduit	# of Current Carry	ing Conductors # o	f Conduits Conduit Size	
	Neutral Size 6 AWG	Ground Size 8 AWG		# of Current Carryi 5	ing Conductors # o	f Conduits Conduit Size 1 1"	
eeder Tag Conductor Size					1. 7. 0		
Feeder Tag Conductor Size 50 6 AWG	6 AWG	8 AWG		5	3	1 1"	
Feeder Tag Conductor Size 50 6 AWG 80 3 AWG	6 AWG 3 AWG	8 AWG 8 AWG		5 5	3 3	1 1" 1 1.25"	
Feeder Tag Conductor Size 50 6 AWG 80 3 AWG 100 1 AWG	6 AWG 3 AWG 1 AWG	8 AWG 8 AWG 8 AWG		5 5 5	3 3 3	1 1" 1 1.25" 1 1.25"	
eeder Tag Conductor Size 50 6 AWG 80 3 AWG 100 1 AWG 200 250 kcmil	6 AWG 3 AWG 1 AWG 250 kcmil	8 AWG 8 AWG 8 AWG 6 AWG		5 5 5 5	3 3 3 3	1 1" 1 1.25" 1 1.25" 1 2.5"	
eeder Tag Conductor Size 50 6 AWG 80 3 AWG 100 1 AWG 200 250 kcmil 400 250 kcmil	6 AWG 3 AWG 1 AWG 250 kcmil 250 kcmil	8 AWG 8 AWG 8 AWG 6 AWG 3 AWG		5 5 5 5 5	3 3 3 3 6	1 1" 1 1.25" 1 1.25" 1 2.5" 2 2.5"	
80 3 AWG 100 1 AWG 200 250 kcmil 400 250 kcmil 600 250 kcmil	6 AWG 3 AWG 1 AWG 250 kcmil 250 kcmil 250 kcmil	8 AWG 8 AWG 8 AWG 6 AWG 3 AWG 1 AWG		5 5 5 5 5 5	3 3 3 3 6 9	1 1" 1 1.25" 1 1.25" 1 2.5" 2 2.5" 3 2.5"	
Feeder Tag Conductor Size 50 6 AWG 80 3 AWG 100 1 AWG 200 250 kcmil 400 250 kcmil 600 250 kcmil 800 400 kcmil	6 AWG 3 AWG 1 AWG 250 kcmil 250 kcmil 250 kcmil 400 kcmil	8 AWG 8 AWG 8 AWG 6 AWG 3 AWG 1 AWG		5 5 5 5 5 5 5	3 3 3 6 9	1 1" 1 1.25" 1 1.25" 1 2.5" 2 2.5" 3 2.5" 3 3"	
Feeder Tag Conductor Size 50 6 AWG 80 3 AWG 100 1 AWG 200 250 kcmil 400 250 kcmil 600 250 kcmil 800 400 kcmil 1200 500 kcmil	6 AWG 3 AWG 1 AWG 250 kcmil 250 kcmil 400 kcmil 500 kcmil	8 AWG 8 AWG 8 AWG 6 AWG 3 AWG 1 AWG 1/0 AWG 3/0 AWG		5 5 5 5 5 5 5 5	3 3 3 6 9 9	1 1" 1 1.25" 1 1.25" 1 2.5" 2 2.5" 3 2.5" 3 3" 4 3"	

BIM THESIS PROPOSAL

HPR Integrated Design

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

Panelboards											
Floor	Voltage	Rldg Ouad	System	Panel Name	VΔ	Watts	Demand Load	Demand Amps	Panelhoard Size	MCB Feed From	Notes
11001	Voltage	Diag Quuu	System	rancinanie	***	viaces	Demana Load	Demana / mps	Turicipouru Size	Wieb recarroniss	110103
Event Level	208/120V	West	Normal	1-2W	38700	38700	19355	161	200	200 1-4W via T3	
Event Level	208/120V	North	Normal	1-2N	24500	24500	12255	102	200	200 1-4N via T2	
Event Level	208/120V	East	Normal	1-2SER	23000	23000	11505	200	200	200 1-D4SER via T1	
Event Level	208/120V	South	Normal	1-25	41000	41000	20505	171	200	200 1-4S via T4	
Event Level	480/277	West	Normal	1-4W	58000	58000	72500	262	400	400 1-D4ER	
Event Level	480/277	North	Normal	1-4N	36300	36300	45375	164	200	200 1-D4ER	
Event Level	480/277	East	Normal	1-4SER	8100	8100	10125	37	200	200 1-D4SER	
Event Level	480/277	South	Normal	1-45	59000	59000	73750	266	400	400 1-D4ER	
Concourse Level	208/120V	West	Normal	2-2W	23400	23400	11705	98	100	100 1-2W	
Concourse Level	208/120V	North	Normal	2-2N	4300	4300	2155	18	100	100 1-2N	
Concourse Level	208/120V	East	Normal	2-2E	3600	3600	1805	15	100	100 1-2SER	
Concourse Level	208/120V	South	Normal	2-25	20000	20000	10005	83	100	100 1-2S	
Concourse Level	480/277	West	Normal	2-4W	9900	9900	12375	45	100	100 1-4W	
Concourse Level	480/277	North	Normal	2-4N	2600	2600	3250	12	100	100 1-4N	
Concourse Level	480/277	East	Normal	2-4E	3000	3000	3750	14	100	100 1-4SER	
Concourse Level	480/277	South	Normal	2-45	7900	7900	9875	36	100	100 1-45	
Club Level	208/120V	West	Normal	3-2W	17400	17400	8705	73	100	100 2-2W	
Club Level	208/120V	South	Normal	3-25	12420	12420	6215	52	100	100 2-2S	
Club Level	480/277	West	Normal	3-4W	5000	5000	6250	23	100	100 2-4W	
Club Level	480/277	South	Normal	3-45	3100	3100	3875	14	100	100 2-4S	
Catwalk	480/277	-	Normal	CW-4S	27000	27000	33750	122	100	100 1-D4SR	
Catwalk	480/277	-	Normal	CW-4N	27000	27000	33750	122	100	100 1-D4SR	
Catwalk	208/120	-	Normal	CW-2S	20000	20000	25000	208	225	225 1-D2SR	
Catwalk	208/120	-	Normal	CW-2N	20000	20000	25000	208	225	225 1-D2SR	
Event Level	208/120V	West	Normal	1-4ER	77100	77100	96375	348	400	400 MSB	
Event Level	480/277	West	Normal	1-2ER	3400	3400	3400	28	100	100 1-4ER via T1	

istribution Board											
loor	Voltage	Bldg Quad	System	Panel Name	VA	Watts	Demand Load	Demand Amps	Panelboard Size	MCB Feed From	Notes
vent Level	480/277	Electrical Room	Normal	1-D4ER	153422	153422	76280	275	400	400 MSB	
vent Level	480/277	Secondary Electrical Room	Normal	1-D4SER	39525	39525	27788	101	200	200 MSB	
vent Level	480/277	Show Power Room	Normal	1-D4SR	67500	67500	67500	244	400	400 MSB	
vent Level	208/120	Show Power Room	Normal	1-D2SR	40000	40000	40000	333	400	400 1-D4SR via T4	

Room Name	Room #	Room NSF	Code Allowable	Allowable Wattage
CONCESSION	146A	208	W/SF 1.68	
ADMIN ASSIST. OPEN OFFICE	150P	182	1.11	
ASSOCIATE AD	156C	316	1.11	
ASST GM OFFICE	150G	137	1.11	
AUDITORIUM	158	881	1.23	
BATHROOM	143A	103	0.98	
BATHROOM	142A	103	0.98	
BATHROOM	142A 118B	123	0.98	
BATHROOM	118D	130	0.98	
BREAK/WORK ROOM	150C	172	0.73	
CAMERA OPER. OFFICE	155D	115	1.11	
CARDIO & STRENGTH TRAINING	101	4419	1.66	
CHANGE ROOM #1	151C	30	0.75	
CHANGE ROOM #2	151B	22	0.75	
CLUB LOCKER ROOM	1316	417	0.75	
COMMISSARY	163	588	1.11	
COMMUNITY ICE	130	22075	2.68	
CONFERENCE ROOM	156K	211	1.23	
CONFERENCE ROOM	150R 150R	202	1.23	
CORRIDOR	Q112	2185	0.66	
CORRIDOR	Q112 Q115	1041	0.66	
CORRIDOR	Q113 Q103	650	0.66	
CORRIDOR	Q105 Q105	212	0.66	
CORRIDOR	112	425	0.66	
CORRIDOR	Q110	249	0.66	
CORRIDOR	Q110 Q109	249	0.66	
CORRIDOR	Q103 Q108	249	0.66	
CORRIDOR	Q108 Q107	1187	0.66	
CORRIDOR	Q107 Q101	1522	0.66	
CORRIDOR	Q101 Q106	124	0.66	
CORRIDOR	Q100 Q104	112	0.66	
CORRIDOR	110	644	0.66	
CORRIDOR	Q111A	320	0.66	
CORRIDOR	Q111A	222	0.66	
DAY LOCKERS	148	116	0.75	
DETENTION ROOM	166	101	0.75	
DIR OF HOCKEY	150H	110	1.11	
DRY LOCKERS	110A	238	0.75	
DRY LOCKERS	110A 112A	240	0.75	
ELE. MACHINE ROOM	M108	74	0.75	
ELECTRICAL	P152	127	0.95	
ELECTRICAL	P152 P164	294	0.95	
ELECTRICAL		62	0.95	
ELECTRICAL	P108 P116	62 77	0.95	
ELECTRICAL	L110	//	0.95	73.1

ELEV #2 ELEV MACHINE ROOM M150 81 0.95 76.9 ELEV. MACHINE ROOM M160 76 0.95 72. EMERGENCY POWER P124 321 0.95 304.9 EQUIPMENT 108 691 0.95 656.4 EVENT ICE 120 16542 3.01 49791.4 EVENT STAFF LOCKER RM. 157 427 0.75 320.2 EXAM ROOM 111A 161 1.66 267.2 ERAMI COACH LOCKER RM. 111A 161 1.66 267.2 FIGURE SKATING PROS 151 243 1.11 269.7 FIGURE SKATING PROS 151 243 1.11 269.7 FIRE COMMAND CENTER 160 40 1.11 44. 46. 46 46 1.11 46. 46 1.11 206.4 46 47 48 49 40 40 40 40 40 40 40 40 40 40	ELECTRICAL ROOM	P125	765	0.95	726.75
ELEV MACHINE ROOM M150 81 0.95 76.9 ELEV MACHINE ROOM M160 76 0.95 72. MERGENCY POWER P124 321 0.95 304.9 EQUIPMENT 108 691 0.95 656.4 EVENT ICE 120 16542 3.01 49791.4 EVENT STAFF LOCKER RM. 157 427 0.75 320.2 EXAM ROOM 111A 161 1.66 267.2 EVENT STAFF LOCKER RM. 118A 89 0.75 66.7 EIGURE SKATING PROS 151 243 1.11 269.7 EIGURE SKATING PROS 151 1.00 40 1.11 44. EIGURE SKATING PROS 151 243 1.11 269.7 EIGURE SKATING PROS 151 26.6 1.11 206.4 EIGURE SKATING PROS 151 243 1.11 269.7 EIGURE SKATING PROS 151 243 1.11 206.4 EIGURE SKATING PROS 150 1.11 371 0.63 73.7 AN. 1142 117 0.63 73.7 AN. 1153 39 0.63 238.7 AN. 1153 39 0.63 238.7 AUNDRY 108A 379 0.63 238.7 EIGURE SCOROM 139 375 0.75 282.7 EIGU	ELEV #1	V101	1952		C
ELEV. MACHINE ROOM M160 76 0.95 72. EMERGENCY POWER P124 321 0.95 304.9 EQUIPMENT 108 691 0.95 656.4 EVENT ICE 120 16542 3.01 49791.4 EVENT ICE 120 16542 3.01 49791.4 EVENT ICE 120 16542 3.01 49791.4 EVENT STAFF LOCKER RM. 157 427 0.75 320.2 EVENT STAFF LOCKER RM. 111A 161 1.66 267.2 EVENT STAFF LOCKER RM. 118A 89 0.75 66.7 EVENT STAFF LOCKER RM. 118A 89 0.75 66.7 EVENT SEGURE SKATING PROS 151 243 1.11 269.7 EVENT STAFF LOCKER RM. 118A 89 0.75 66.7 EVENT STAFF LOCKER RM. 118A 89 0.75 248.2 EVENT STAFF LOCKER RM. 118A 89 0.75 248.2 EVENT STAFF LOCKER RM. 123 1923 0.95 1826.8 EVENT STAFF LOCKER RM. 118 19 0.75 278.2 EVENT STAFF LOCKER RM. 139 375 0.75 261.2 EVENT STAFF LOCKER ROOM 139 375 0.75 261.2 EVENT ROOM 139 375 0.75 281.2 EVENT ROOM 134 378 0.75 283.2 EVENT ROOM 135 425 0.75 318.7 EVENT ROOM 136 378 0.75 283.2 EVENT ROOM 137 401 0.75 300.7 EVENT ROOM 134 378 0.75 283.2 EVENT ROOM 134 378 0.75 283.2 EVENT ROOM 134 378 0.75 283.2 EVENT ROOM 135 1328 0.95 1261.2 EVENT ROOM 136 378 0.75 283.2 EVENT ROOM 136 378 0.75 283.2 EVENT ROOM 137 401 0.75 300.7 EVENT ROOM 136 378 0.75 283.2 EVENT ROOM 137 401 0.75 300.7 EVENT ROOM 136 378 0.75 283.2 EVENT ROOM 137 401 0.75 300.7 EVENT ROOM 136 378 0.75 283.2 EVENT ROOM 137 401 0.75 300.7 EVENT ROOM 136 378 0.75 283.2 EVENT ROOM 137 401 0.75 300.7 EVENT ROOM 138 366 0.75 244.2 EVENT ROOM 139 375 0.75 399.2 EVENT ROOM 139 375 0.75 399.2 EVENT ROOM 139 378 0.75 283.2 EVENT ROOM 139 20.75 283.2 EVENT ROOM 139 20.75 283.2 EVENT ROOM 139 20.75 289.2 EVENT ROOM 139 20.75 289.2 EVENT ROOM 139 20.75 289.2 EVENT R	ELEV #2	V103	103		C
EMERGENCY POWER EQUIPMENT 108 691 0.95 656.4 EQUIPMENT 108 157 427 0.75 320.2 EXAM ROOM 111A 161 1.66 267.2 EXAM ROOM 111A 161 1.66 267.2 EXAM ROOM 111A 161 1.66 267.3 EXAM ROOM 111A 161 1.66 267.3 EXAM ROOM 111A 161 1.66 267.3 EXAM ROOM 1.11 269.7 EXAM ROOM 1.11 269.7 EXAM ROOM 1.11 1.11 269.7 EXAM ROOM 1.12 1.11 269.7 EXAM ROOM 1.12 1.11 206.4 EXAM ROOM 1.11 206.4 EXAM ROOM 1.11 206.6 EXAM ROOM 1.11 206.6 EXAM ROOM 1.11 207 EXAM ROOM 1.11 207 EXAM ROOM 1.11 208 EXAM ROOM 1.11 209 EXAM ROOM 1.12 EXAM ROOM 1.13 EXAM ROOM 1.14 EXAM ROOM 1.14 EXAM ROOM 1.15 EXAM ROOM 1.16 EXAM ROOM 1.17 EXAM ROOM 1.18 EXAM ROOM 1.19 EXAM ROOM 1.10 EXAM ROOM 1.10 EXAM ROOM 1.11 EXAM ROOM 1.12 EXAM ROOM 1.13 EXAM ROOM 1.14 EXAM ROOM 1.15 EXAM ROOM 1.16 EXAM ROOM 1.17 EXAM ROOM 1.18 EXAM ROOM 1.19 EXAM ROOM 1.19 EXAM ROOM 1.10 EXAM ROOM 1.11 EXAM ROOM 1.11 EXAM ROOM 1.11 EXAM ROOM 1.12 EXAM ROOM 1.12 EXAM ROOM 1.13 EXAM ROOM 1.14 EXAM ROOM 1.15 EXAM ROOM 1.16 EXAM ROOM 1.17 EXAM ROOM 1.18 EXAM ROOM 1.19 EXAM ROOM 1.19 EXAM ROOM 1.11 EXAM ROOM	ELEV MACHINE ROOM	M150	81	0.95	76.95
EQUIPMENT EVENT ICE EVENT ICE 120 16542 3.01 49791.4 EVENT STAFF LOCKER RM. 157 427 0.75 320.2 EVENT STAFF LOCKER RM. 158 EVENT STAFF LOCKER RM. 118A 89 0.75 66.2 EVENT STAFF LOCKER RM. 118A 89 0.75 EVENT STAFF LOCKER RM. 1111 269.7 1111 269.7 110 110 110 110 110 110 110 1	ELEV. MACHINE ROOM	M160	76	0.95	72.2
EVENT ICE 120 16542 3.01 49791.4 EVENT STAFF LOCKER RM. 157 427 0.75 320.2 EVENT STAFF LOCKER RM. 157 427 0.75 320.2 EVENT STAFF LOCKER RM. 118A 89 0.75 66.7 EVENT STAFF LOCKER RM. 1110 40. EVENT STAFF LOCKER RM. 1111 269.7 EVENT STAFF LOCKER RM. 1110 719 1.66 1193.5 EVENT STAFF LOCKER STAFF LOCKER STAFF LOCKER SUPPORT 117 2690 0.95 2555. AN. 1142 117 0.63 73.7 AN. 1153 39 0.63 24.5 AUNDRY 108A 379 0.63 238.7 AUNDRY 149 2166 0.9 1949. OCKER ROOM 141 371 0.75 278.2 OCKER ROOM 140 350 0.75 281.2 OCKER ROOM 139 375 0.75 281.2 OCKER ROOM 138 366 0.75 724.4 OCKER ROOM 138 366 0.75 278.2 OCKER ROOM 138 366 0.75 278.2 OCKER ROOM 137 401 0.75 300.7 OCKER ROOM 136 378 0.75 283. OCKER ROOM 137 401 0.75 300.7 OCKER ROOM 137 401 0.75 300.7 OCKER ROOM 138 378 0.75 283. OCKER ROOM 137 401 0.75 300.7 OCKER ROOM 138 378 0.75 283. OCKER ROOM 139 140 1.11 155. OCKER ROOM 130 130 140 1.11 155. OCKER ROOM 131 150 1.11 175.3 OCKER ROOM 134 378 0.75 283. OCKER ROOM 135 425 0.75 318.7 OCKER ROOM 136 378 0.75 283. OCKER ROOM 137 401 0.75 89.2 OCKER ROOM 138 378 0.75 283. OCKER ROOM 139 1.11 176.0 OCKER ROOM 130 1.11 176.0 OCKER ROOM 130 1.11 176.0 OCKER ROOM 131 1.11 1.176.0 OCKER ROOM 132 1.11 1.176.0 OCKER ROOM 134 378 0.75 1.11 1.176.0 OCKER ROOM 136 1.11 1.176.0 OCKER ROOM 137 401 0.75 89.2 OCKER ROOM 138 366 0.75 1.11 1.176.0 OCKER ROOM 139 1.11 1.176.0 OCKER ROOM 139 1.11 1.176.0 OCKER ROOM 130 1.11 1.176.0 O	MERGENCY POWER	P124	321	0.95	304.95
EVENT STAFF LOCKER RM. EXAM ROOM 111A 161 1.66 267.2 EXAM ROOM 1.11 269.7 151 1243 1.11 269.7 1584 159 180 1.11 1206.4 140 1.11 121 126.4 140 141 144. 1550 1650 1750 186 1.11 1206.4 140 141 141 141 141 141 141 1	EQUIPMENT	108	691	0.95	656.45
EXAM ROOM 111A 161 1.66 267.2 EMALE COACH LOCKER RM. 118A 89 0.75 66.7 IGURE SKATING PROS 151 243 1.11 269.7 IGURE SKATING PROS 151 243 1.11 269.7 IGURE SKATING PROS 150 40 1.11 44. IGM OFFICE 150F 186 1.11 206.4 IGM OFFICE 150F 186 1.11 206.4 IGAD-IN ROOM 159 82 0.66 54.1 IGAD-IN ROOM 111D 719 1.66 1193.5 IGE PLANT 123 1923 0.95 1826.8 IGE SUPPORT 117 2690 0.95 255.5 AN. J142 117 0.63 73.7 AN. J153 39 0.63 24.5 AUNDRY 108A 379 0.63 238.7 IOADING DOCK 162 658 0.63 414.5 IOBBY 149 2166 0.9 1949. IOCKER ROOM 141 371 0.75 278.2 IOCKER ROOM 140 350 IOCKER ROOM 139 375 IOCKER ROOM 138 366 IOCKER ROOM 138 366 IOCKER ROOM 138 366 IOCKER ROOM 138 366 IOCKER ROOM 136 378 IOCKER ROOM 137 401 IOCKER ROOM 136 378 IOCKER ROOM 137 401 IOCKER ROOM 138 366 IOCKER ROOM 136 378 IOCKER ROOM 137 401 IOCKER ROOM 138 366 IOCKER ROOM 139 375 IOCKER ROOM 130 378 IOCKER ROOM 131 378 IOCKER ROOM 132 378 IOCKER ROOM 134 378 IOCKER ROOM 135 425 IOCKER ROOM 136 378 IOCKER ROOM 137 401 IOCKER ROOM 138 366 IOCKER ROOM 139 375 IOCKER ROOM 130 378 IOCKER ROOM 131 378 IOCKER ROOM 132 378 IOCKER ROOM 134 378 IOCKER ROOM 135 425 IOCKER ROOM 136 378 IOCKER ROOM 137 401 IOCKER ROOM 138 366 IOCKER ROOM 139 375 IOCKER ROOM 130 378 IOCKER ROOM 131 378 IOCKER ROOM 132 378 IOCKER ROOM 134 378 IOCKER ROOM 135 425 IOCKER ROOM 136 378 IOCKER ROOM 137 401 IOCKER ROOM 138 366 IOCKER ROOM 139 375 IOCKER ROOM 130 378 IOCKER ROOM 131 378 IOCKER ROOM 136 378 IOCKER ROOM 137 401 IOCKER ROOM 138 366 IOCKER ROOM 139 375 IOCKER ROOM 130 378 IOCKER ROOM 130 378 IOCKER ROOM 131 378 IOCKER ROOM 132 378 IOCKER ROOM 134 378 IOCKER ROOM 135 425 IOCKER ROOM 136 378 IOCKER ROOM 137 401 IOCKER ROOM 138 366 IOCKER ROOM 139 375 IOCKER ROOM 130 375 IOCKER ROOM 131 378 IOCKER ROOM 131 378 IOCKER ROOM 132 378 IOCKER ROOM 133 379 IOCKER ROOM 136 378 IOCKER ROOM 137 401 IOCKER ROOM 138 366 IOCKER ROOM 13	EVENT ICE	120	16542	3.01	49791.42
FEMALE COACH LOCKER RM. 118A 89 0.75 66.7 FIGURE SKATING PROS 151 243 1.11 269.7 FIGURE SKATING PROS 151 243 1.11 269.7 FIRE COMMAND CENTER 160 40 1.11 44. GIM OFFICE 150F 186 1.11 206.4 HEAD-IN ROOM 159 82 0.66 54.1 193.5 CE PLANT 123 1923 0.95 1826.8 CE SUPPORT 117 2690 0.95 2555. AN. J142 117 0.63 73.7 AN. J153 39 0.63 24.5 AUNDRY 108A 379 0.63 238.7 AUNDRY 108A 379 0.63 238.7 O.00BBY 149 2166 0.9 1949. O.OCKER ROOM 139 375 0.75 281.2 O.OCKER ROOM 139 375 0.75 281.2 O.OCKER ROOM 139 375 0.75 281.2 O.OCKER ROOM 138 366 0.75 278.2 O.OCKER ROOM 138 366 0.75 278.2 O.OCKER ROOM 137 401 0.75 300.7 O.OCKER ROOM 136 378 0.75 283. O.OCKER ROOM 137 401 0.75 300.7 O.OCKER ROOM 136 378 0.75 283. O.OCKER ROOM 137 401 0.75 283. O.OCKER ROOM 138 378 0.75 283. O.OCKER ROOM 134 378 0.75 283. O.OCKER ROOM 134 378 0.75 283. O.OCKER ROOM 135 378 0.75 283. O.OCKER ROOM 136 378 0.75 283. O.OCKER ROOM 137 401 0.75 300.7 O.OCKER ROOM 138 378 0.75 283. O.OCKER ROOM 139 378 0.75 283. O.OCKER ROOM 130 0.75 283. O.	EVENT STAFF LOCKER RM.	157	427	0.75	320.25
FIGURE SKATING PROS FIRE COMMAND CENTER FIRE C	EXAM ROOM	111A	161	1.66	267.26
FIRE COMMAND CENTER 160 40 1.11 44. SIM OFFICE 150F 186 1.11 206.4 HEAD-IN ROOM 159 82 0.66 54.1 HYDROTHERAPY ROOM 111D 719 1.66 1193.5 CE PLANT 123 1923 0.95 1826.8 CE SUPPORT 117 2690 0.95 2555. AN. J142 117 0.63 73.7 AN. J153 39 0.63 24.5 AUNDRY 108A 379 0.63 238.7 AOADING DOCK 162 658 0.63 414.5 AOBBY 149 2166 0.9 1949. COCKER ROOM 141 371 0.75 278.2 COCKER ROOM 139 375 0.75 281.2 COCKER ROOM 139 375 0.75 281.2 COCKER ROOM 138 366 0.75 274. COCKER ROOM 135 425 0.75 318.7 COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 138 378 0.75 283. COCKER ROOM 139 378 0.75 283. COCKER ROOM 139 378 0.75 283. COCKER ROOM 136 378 0.75 283. COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 138 366 0.75 318.7 COCKER ROOM 139 375 0.75 9900000000000000000000000000000000000	EMALE COACH LOCKER RM.	118A	89	0.75	66.75
SIM OFFICE 150F 186 1.11 206.4 HEAD-IN ROOM 159 82 0.66 54.1 HYDROTHERAPY ROOM 111D 719 1.66 1193.5 CE PLANT 123 1923 0.95 1826.8 CE SUPPORT 117 2690 0.95 2555. AN. J142 117 0.63 73.7 AN. J153 39 0.63 24.5 AUNDRY 0.0ADING DOCK 162 658 0.63 414.5 0.0BBY 149 2166 0.9 1949. 0.0CKER ROOM 141 371 0.75 278.2 0.0CKER ROOM 139 375 0.75 281.2 0.0CKER ROOM 138 366 0.75 274. 0.0CKER ROOM 135 0.0CKER ROOM 137 0.0CKER ROOM 138 366 0.75 274. 0.0CKER ROOM 137 0.0CKER ROOM 138 366 0.75 274. 0.0CKER ROOM 137 0.0CKER ROOM 138 0.75 283. 0.0CKER ROOM 137 0.0CKER ROOM 138 0.75 283. 0.0CKER ROOM 139 378 0.75 283. 0.75 283. 0.0CKER ROOM 130 378 0.75 283. 0.75 283. 0.75 284. 0.75 185. 0.75 186. 0.75 187. 0.75 189.2 0.75 0.75 199.2 0.75 199.2 0.75 199.2 0.75 199.2 0.75 199.2 0.75 199.2 0.75 199.2 0.75 199.2 0.75 199.2 0.75 199.2 0.75 199.3 0.75 199.3 0.75 199.3 0.75 199.3 0.75 199.3 0.75 199.3 0.75 199.4 0.75 199.4 0.75 199.4 0.75 199.4 0.75 199.5 0.75 199.6	IGURE SKATING PROS	151	243	1.11	269.73
HEAD-IN ROOM 159 82 0.66 54.1 HYDROTHERAPY ROOM 111D 719 1.66 1193.5 CE PLANT 123 1923 0.95 1826.8 CE SUPPORT 117 2690 0.95 2555. AN. 1142 117 0.63 73.7 AN. 1153 39 0.63 24.5 AUNDRY 108A 379 0.63 238.7 OADING DOCK 162 658 0.63 414.5 OADING DOCK 162 658 0.63 414.5 OADING DOCK 162 658 0.63 414.5 OADING DOCK 164 0.9 1949. OCKER ROOM 139 375 0.75 278.2 OCKER ROOM 139 375 0.75 281.2 OCKER ROOM 139 375 0.75 281.2 OCKER ROOM 138 366 0.75 274. OCKER ROOM 138 366 0.75 274. OCKER ROOM 137 401 0.75 300.7 OCKER ROOM 137 401 0.75 300.7 OCKER ROOM 136 378 0.75 283. OCKER ROOM 134 378 0.75 283. OCKER ROOM 136 111 155.0 OKKECHANICAL ROOM MI22 1328 0.95 1261. OKKEC	FIRE COMMAND CENTER	160	40	1.11	44.4
TYDROTHERAPY ROOM 111D 719 1.66 1193.5 CE PLANT 123 1923 0.95 1826.8 CE SUPPORT 117 2690 0.95 2555. AN. AN. J142 117 0.63 73.7 AN. J153 39 0.63 24.5 AUNDRY 108A 379 0.63 238.7 AOADING DOCK 162 658 0.63 414.5 AUNDRY 149 2166 0.9 1949. COCKER ROOM 141 371 0.75 278.2 COCKER ROOM 139 375 0.75 281.2 COCKER ROOM 140 350 0.75 274.4 COCKER ROOM 138 366 0.75 274. COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 134 378 0.75 283. COCKER ROOM 136 137 135 COCKER ROOM 130 131 155. COCKER ROOM 132 1328 0.95 1261. COCKER ROOM 134 COCKER ROOM 135 140 COCKER ROOM 1566 158 1.11 175.3 COCKER ROOM 1566 158 1.11 175.3 COCKER ROOM 1566 158 1.11 175.3 COCKER ROOM 1566 158 109 111 117.6 COCKER ROOM 110 111 117.6 COCKER ROOM 110 111 111 111 111 111 111	€M OFFICE	150F	186	1.11	206.46
CE PLANT 123 1923 0.95 1826.8 CE SUPPORT 117 2690 0.95 2555. AN. J142 117 0.63 73.7 AN. J153 39 0.63 24.5 AUNDRY 108A 379 0.63 238.7 OADING DOCK 162 658 0.63 414.5 OBBY 149 2166 0.9 1949. OCKER ROOM 141 371 0.75 278.2 OCKER ROOM 139 375 0.75 281.2 OCKER ROOM 140 350 0.75 281.2 OCKER ROOM 138 366 0.75 274. OCKER ROOM 135 425 0.75 318.7 OCKER ROOM 136 378 0.75 283. OCKER ROOM 134 378 0.75 283. OCKER ROOM 134 378 0.75 283. OCKER ROOM 134	HEAD-IN ROOM	159	82	0.66	54.12
CE SUPPORT AN. J142 J17 AN. J153 J9 O.63 Z4.5 AUNDRY JOADING DOCK J162 G58 O.63 J145 J149 J166 O.9 J1949 J166 O.9 J1949 J140 J141 J17 O.63 J145 J153 J19 O.63 J238.7 J145 J149 J166 O.9 J1949 J166 O.9 J1949 J166 O.9 J1949 J17 O.75 J180 J18	HYDROTHERAPY ROOM	111D	719	1.66	1193.54
AN. 1142 117 0.63 73.7 AN. 1153 39 0.63 24.5 AUNDRY 108A 379 0.63 238.7 OADING DOCK 162 658 0.63 414.5 OBBY 149 2166 0.9 1949. OCKER ROOM 141 371 0.75 278.2 OCKER ROOM 139 375 0.75 281.2 OCKER ROOM 140 350 0.75 262. OCKER ROOM 138 366 0.75 274. OCKER ROOM 135 425 0.75 318.7 OCKER ROOM 137 401 0.75 300.7 OCKER ROOM 136 378 0.75 283. OCKER ROOM 134 378 0.75 283. OCKER ROOM 136 378 0.75 283. OCKER ROOM 137 401 1.11 155. OCKER ROOM 138 378 0.75 283. OCKER ROOM 139 140 1.11 155. OCKER ROOM 140 1.11 155. OCKER ROOM 156 119 0.75 89.2 OCKER ROOM 156 119 1.11 17.6 OKECHANICAL ROOM M122 1328 0.95 1261. OKECHANICAL ROOM M122 1328 0.95 1261. OKEDIA SUITE 155 319 1.11 354.0 OKEDIA SUITE 156F 106 1.11 17.6 OKEN ASST COACH 156F 106 1.11 175.3 OKEN ASST COACH 156F 109 1.11 120.9 OKEN REST COACH 156B 109 1.11 120.9 OKEN REST COACH 156G 153 0.73 111.6 OKEN SST COACH 100KER RM. 100 1332 0.75 99 OKEN RECRUIT LOUNGE 156G 153 0.73 111.6 OKEN'S COACH LOCKER RM. 102A 188 0.75 14 OKEN'S COACH LOUNGE 102 186 0.73 135.7 OKEN'S RESTROOM R128 264 0.98 258.7	CE PLANT	123	1923	0.95	1826.85
ANN. J153 39 0.63 24.5 AUNDRY 108A 379 0.63 238.7 COADING DOCK 162 658 0.63 414.5 COBBY 149 2166 0.9 1949. COCKER ROOM 141 371 0.75 278.2 COCKER ROOM 139 375 0.75 281.2 COCKER ROOM 140 350 0.75 262. COCKER ROOM 138 366 0.75 274. COCKER ROOM 135 425 0.75 318.7 COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 134 378 0.75 283. COCKER ROOM 134 378 0.75 283. COCKER ROOM 134 378 0.75 283. MAIN COMMUNICATION RM. 109 140 1.11 155. MALE COACH LOCKER RM. 118C 119 0.75 89.2 MECHANICAL ROOM M122 1328 0.95 1261. MEDIA SUITE 155 319 1.11 354.0 MEDIA SUITE 155 319 1.11 354.0 MEN ASST COACH 156F 106 1.11 17.6 MEN ASST COACH 156F 106 1.11 17.6 MEN ASST COACH 156F 106 1.11 175.3 MEN ASST COACH 156F 106 1.11 175.3 MEN ASST COACH 156F 109 1.11 120.9 MEN DIR HOCKEY OPS 156B 109 1.11 120.9 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN RECRUIT LOUNGE 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	CE SUPPORT	117	2690	0.95	2555.5
AUNDRY 108A 379 0.63 238.7 COADING DOCK 162 658 0.63 414.5 COBBY 149 2166 0.9 1949. COCKER ROOM 141 371 0.75 278.2 COCKER ROOM 139 375 0.75 281.2 COCKER ROOM 140 350 0.75 262. COCKER ROOM 138 366 0.75 274. COCKER ROOM 135 425 0.75 318.7 COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 134 378 0.75 283. COCKER ROOM 134 378 0.75 283. COCKER ROOM 134 378 0.75 283. MAIN COMMUNICATION RM. 109 140 1.11 155. MALE COACH LOCKER RM. 118C 119 0.75 89.2 MECHANICAL ROOM M122 1328 0.95 1261. MEDIA SUITE 155 319 1.11 354.0 MEDIA SUITE 155 319 1.11 354.0 MEN ASST COACH 156F 106 1.11 17.6 MEN ASST COACH 156F 106 1.11 17.6 MEN ASST COACH 156F 106 1.11 175.3 MEN ASST COACH 156F 109 1.11 120.9 MEN ICE HOCKEY OPS 156B 109 1.11 120.9 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN RECRUIT LOUNGE 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	AN.	J142	117	0.63	73.71
COADING DOCK 162 658 0.63 414.5 COBBY 149 2166 0.9 1949. COCKER ROOM 141 371 0.75 278.2 COCKER ROOM 139 375 0.75 281.2 COCKER ROOM 140 350 0.75 262. COCKER ROOM 138 366 0.75 274. COCKER ROOM 135 425 0.75 318.7 COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 134 378 0.75 283. MAIN COMMUNICATION RM. 109 140 1.11 155. MALE COACH LOCKER RM. 118C 119 0.75 89.2 MECHANICAL ROOM M122 1328 0.95 1261. MEDIA SUITE 156F 106 1.11 117.6 MEN ASST COACH 156F 106 1.11 175.3 MEN ASST COACH 156E 158 1.11 175.3	AN.	J153	39	0.63	24.57
OOBBY 149 2166 0.9 1949. OOCKER ROOM 141 371 0.75 278.2 OCKER ROOM 139 375 0.75 281.2 OCKER ROOM 140 350 0.75 262. OCKER ROOM 138 366 0.75 274. OCKER ROOM 135 425 0.75 318.7 OCKER ROOM 137 401 0.75 300.7 OCKER ROOM 136 378 0.75 283. OCKER ROOM 134 378 0.75 283. MAIN COMMUNICATION RM. 109 140 1.11 155. MALE COACH LOCKER RM. 118C 119 0.75 89.2 MECHANICAL ROOM M122 1328 0.95 1261. MEDIA SUITE 155 319 1.11 354.0 MEN ASST COACH 156F 106 1.11 117.6 MEN ASST COACH 156E 158 1.11 175.3 MEN ASST COACH 156B 109 1.11 120.9	AUNDRY	108A	379	0.63	238.77
COCKER ROOM 141 371 0.75 278.2 COCKER ROOM 139 375 0.75 281.2 COCKER ROOM 140 350 0.75 262. COCKER ROOM 138 366 0.75 274. COCKER ROOM 135 425 0.75 318.7 COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 134 378 0.75 283. MAIN COMMUNICATION RM. 109 140 1.11 155. MALE COACH LOCKER RM. 118C 119 0.75 89.2 MECHANICAL ROOM M122 1328 0.95 1261. MEDIA SUITE 155 319 1.11 354.0 MEN ASST COACH 156F 106 1.11 117.6 MEN ASST COACH 156E 158 1.11 175.3 MEN ASST COACH 156H 142 1.11 157.6 MEN IN HOCKEY OPS 156B 109 1.11 120.9	OADING DOCK	162	658	0.63	414.54
COCKER ROOM 139 375 0.75 281.2 COCKER ROOM 140 350 0.75 262. COCKER ROOM 138 366 0.75 274. COCKER ROOM 135 425 0.75 318.7 COCKER ROOM 137 401 0.75 300.7 COCKER ROOM 136 378 0.75 283. COCKER ROOM 134 378 0.75 283. MAIN COMMUNICATION RM. 109 140 1.11 155. MALE COACH LOCKER RM. 118C 119 0.75 89.2 MECHANICAL ROOM M122 1328 0.95 1261. MEDIA SUITE 155 319 1.11 354.0 MEN ASST COACH 156F 106 1.11 117.6 MEN ASST COACH 156E 158 1.11 175.3 MEN ASST COACH 156B 109 1.11 157.6 MEN IR HOCKEY OPS 156B 109 1.11 120.9 MEN IR HOCKEY LOCKER RM. 110D 1332 0.75 <td< td=""><td>.OBBY</td><td>149</td><td>2166</td><td>0.9</td><td>1949.4</td></td<>	.OBBY	149	2166	0.9	1949.4
OCKER ROOM 140 350 0.75 262. OCKER ROOM 138 366 0.75 274. OCKER ROOM 135 425 0.75 318.7 OCKER ROOM 137 401 0.75 300.7 OCKER ROOM 136 378 0.75 283. OCKER ROOM 134 378 0.75 283. OCKER ROOM 134 378 0.75 283. MAIN COMMUNICATION RM. 109 140 1.11 155. MALE COACH LOCKER RM. 118C 119 0.75 89.2 MECHANICAL ROOM M122 1328 0.95 1261. MEDIA SUITE 155 319 1.11 354.0 MEN ASST COACH 156F 106 1.11 117.6 MEN ASST COACH 156F 106 1.11 175.3 MEN ASST COACH 156F 106 1.11 175.3 MEN ASST COACH 156B 109 1.11 157.6 MEN DIR HOCKEY OPS 156B 109 1.11 120.9 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 11.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	OCKER ROOM	141	371	0.75	278.25
OCKER ROOM 138 366 0.75 274. OCKER ROOM 135 425 0.75 318.7 OCKER ROOM 137 401 0.75 300.7 OCKER ROOM 136 378 0.75 283. OCKER ROOM 134 378 0.75 283. OCKER ROOM 134 378 0.75 283. MAIN COMMUNICATION RM. 109 140 1.11 155. MALE COACH LOCKER RM. 118C 119 0.75 89.2 MECHANICAL ROOM M122 1328 0.95 1261. MEDIA SUITE 155 319 1.11 354.0 MEN ASST COACH 156F 106 1.11 117.6 MEN ASST COACH 156E 158 1.11 175.3 MEN ASST COACH 156H 142 1.11 157.6 MEN DIR HOCKEY OPS 156B 109 1.11 120.9 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN RECRUIT LOUNGE 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	OCKER ROOM	139	375	0.75	281.25
OCKER ROOM 135 425 0.75 318.7 OCKER ROOM 137 401 0.75 300.7 OCKER ROOM 136 378 0.75 283. OCKER ROOM 134 378 0.75 283. OCKER ROOM 134 378 0.75 283. MAIN COMMUNICATION RM. 109 140 1.11 155. MALE COACH LOCKER RM. 118C 119 0.75 89.2 MECHANICAL ROOM M122 1328 0.95 1261. MEDIA SUITE 155 319 1.11 354.0 MEN ASST COACH 156F 106 1.11 117.6 MEN ASST COACH 156E 158 1.11 175.3 MEN ASST COACH 156H 142 1.11 157.6 MEN DIR HOCKEY OPS 156B 109 1.11 120.9 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN RECRUIT LOUNGE 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	OCKER ROOM	140	350	0.75	262.5
OCKER ROOM 137 401 0.75 300.7 OCKER ROOM 136 378 0.75 283. OCKER ROOM 134 378 0.75 283. MAIN COMMUNICATION RM. 109 140 1.11 155. MALE COACH LOCKER RM. 118C 119 0.75 89.2 MECHANICAL ROOM M122 1328 0.95 1261. MEDIA SUITE 155 319 1.11 354.0 MEN ASST COACH 156F 106 1.11 117.6 MEN ASST COACH 156E 158 1.11 175.3 MEN ASST COACH 156H 142 1.11 157.6 MEN DIR HOCKEY OPS 156B 109 1.11 120.9 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN RECRUIT LOUNGE 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S RESTROOM R128 264 0.98 258.7	OCKER ROOM	138	366	0.75	274.5
OCKER ROOM 136 378 0.75 283. OCKER ROOM 134 378 0.75 283. MAIN COMMUNICATION RM. 109 140 1.11 155. MALE COACH LOCKER RM. 118C 119 0.75 89.2 MECHANICAL ROOM M122 1328 0.95 1261. MEDIA SUITE 155 319 1.11 354.0 MEN ASST COACH 156F 106 1.11 117.6 MEN ASST COACH 156E 158 1.11 175.3 MEN ASST COACH 156H 142 1.11 157.6 MEN DIR HOCKEY OPS 156B 109 1.11 120.9 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN RECRUIT LOUNGE 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S RESTROOM R128 264 0.98 258.7	OCKER ROOM	135	425	0.75	318.75
AMAIN COMMUNICATION RM. 109 140 1.11 155. MALE COACH LOCKER RM. 118C 119 0.75 89.2 MECHANICAL ROOM M122 1328 0.95 1261. MEDIA SUITE 155 319 1.11 354.0 MEN ASST COACH 156F 106 1.11 117.6 MEN ASST COACH 156E 158 1.11 175.3 MEN ASST COACH 156H 142 1.11 157.6 MEN DIR HOCKEY OPS 156B 109 1.11 120.9 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN RECRUIT LOUNGE 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	OCKER ROOM	137	401	0.75	300.75
WAIN COMMUNICATION RM. 109 140 1.11 155. WALE COACH LOCKER RM. 118C 119 0.75 89.2 MECHANICAL ROOM M122 1328 0.95 1261. MEDIA SUITE 155 319 1.11 354.0 MEN ASST COACH 156F 106 1.11 117.6 MEN ASST COACH 156E 158 1.11 175.3 MEN ASST COACH 156H 142 1.11 157.6 MEN DIR HOCKEY OPS 156B 109 1.11 120.9 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN RECRUIT LOUNGE 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	OCKER ROOM	136	378	0.75	283.5
MALE COACH LOCKER RM. 118C 119 0.75 89.2 MECHANICAL ROOM M122 1328 0.95 1261. MEDIA SUITE 155 319 1.11 354.0 MEN ASST COACH 156F 106 1.11 117.6 MEN ASST COACH 156E 158 1.11 175.3 MEN ASST COACH 156H 142 1.11 157.6 MEN DIR HOCKEY OPS 156B 109 1.11 120.9 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN RECRUIT LOUNGE 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	OCKER ROOM	134	378	0.75	283.5
MECHANICAL ROOM M122 1328 0.95 1261. MEDIA SUITE 155 319 1.11 354.0 MEN ASST COACH 156F 106 1.11 117.6 MEN ASST COACH 156E 158 1.11 175.3 MEN ASST COACH 156H 142 1.11 157.6 MEN DIR HOCKEY OPS 156B 109 1.11 120.9 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN RECRUIT LOUNGE 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	MAIN COMMUNICATION RM.	109	140	1.11	155.4
WEDIA SUITE 155 319 1.11 354.0 MEN ASST COACH 156F 106 1.11 117.6 MEN ASST COACH 156E 158 1.11 175.3 MEN ASST COACH 156H 142 1.11 157.6 MEN DIR HOCKEY OPS 156B 109 1.11 120.9 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN RECRUIT LOUNGE 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	VIALE COACH LOCKER RM.	118 C	119	0.75	89.25
MEN ASST COACH 156F 106 1.11 117.6 MEN ASST COACH 156E 158 1.11 175.3 MEN ASST COACH 156H 142 1.11 157.6 MEN DIR HOCKEY OPS 156B 109 1.11 120.9 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN ICE HOCKEY LOCKER RM. 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	MECHANICAL ROOM	M122	1328	0.95	1261.6
MEN ASST COACH 156E 158 1.11 175.3 MEN ASST COACH 156H 142 1.11 157.6 MEN DIR HOCKEY OPS 156B 109 1.11 120.9 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN RECRUIT LOUNGE 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	MEDIA SUITE	155	319	1.11	354.09
MEN ASST COACH 156H 142 1.11 157.6 MEN DIR HOCKEY OPS 156B 109 1.11 120.9 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN RECRUIT LOUNGE 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	MEN ASST COACH	156F	106	1.11	117.66
MEN DIR HOCKEY OPS 156B 109 1.11 120.9 MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN RECRUIT LOUNGE 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	MEN ASST COACH	156E	158	1.11	175.38
MEN ICE HOCKEY LOCKER RM. 110D 1332 0.75 99 MEN RECRUIT LOUNGE 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	MEN ASST COACH	156H	142	1.11	157.62
MEN RECRUIT LOUNGE 156G 153 0.73 111.6 MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	MEN DIR HOCKEY OPS	156B	109	1.11	120.99
MEN'S COACH LOCKER RM. 102A 188 0.75 14 MEN'S COACH LOUNGE 102 186 0.73 135.70 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.70	MEN ICE HOCKEY LOCKER RM.	110D	1332	0.75	999
MEN'S COACH LOUNGE 102 186 0.73 135.7 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	MEN RECRUIT LOUNGE	156G	153	0.73	111.69
MEN'S COACH LOUNGE 102 186 0.73 135.70 MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	MEN'S COACH LOCKER RM.	102A	188	0.75	141
MEN'S EQUIPMENT 107 360 0.63 226. MEN'S RESTROOM R128 264 0.98 258.7	MEN'S COACH LOUNGE	102	186	0.73	135.78
MEN'S RESTROOM R128 264 0.98 258.7	MEN'S EQUIPMENT			0.63	226.8
					258.72
VIEN'S RESTROOM R153 159 0.98 155.8	MEN'S RESTROOM	R153	159	0.98	155.82
					436.54

OFFICE 151A 149 1.11 165.33 OFFICE 155A 115 1.11 127.65 OFFICE 101B 131 1.11 145.43 OFFICE 106 114 1.11 126.65 OFFICE 111C 125 1.11 138.75 OFFICE 111G 126 1.11 139.86 OFFICIAL LOCKER 145 84 0.75 68.25 OFFICIAL LOCKER 143 91 0.75 68.25 OFFICIAL LOCKER 142 87 0.75 68.25 OFFICIAL LOCKER 144 86 0.75 68.25 OFFICIAL LOCKER 144 86 0.75 68.25 OFFICIAL LOCKER 144 86 0.75 68.25 OFFICIAL LOCKER 142 87 0.75 65.25 OFFICIAL LOCKER 142 87 0.75 65.25 OFFICIAL LOCKER 142 87 0.75 64.2	OFFICE	156J	318	1.11	352.98
DEFICE 155A 115 1.11 127.65 DEFICE 101B 131 1.11 145.41 DEFICE 106 114 1.11 126.54 DEFICE 111C 125 1.11 138.75 DEFICE 111C 125 1.11 138.75 DEFICE 111G 126 1.11 139.86 DEFICE 111G 126 1.11 139.86 DEFICE 111G 126 1.11 139.86 DEFICIAL LOCKER 145 84 0.75 63 DEFICIAL LOCKER 144 91 0.75 68.25 DEFICIAL LOCKER 144 86 0.75 64.5 DEFICIAL LOCKER 143 91 0.75 64.5 DEFICIAL LOCKER 143 91 0.75 64.5 DEFICIAL LOCKER 143 91 0.75 90.75 DEFICIAL LOCKER 145 1.10 0.95 DEFI	OFFICE	150E	115	1.11	127.65
DEFICE 101B 131 1.11 145.41 DEFICE 106 114 1.11 126.54 DEFICE 111C 125 1.11 138.75 DEFICE 111C 125 1.11 138.75 DEFICE 123A 103 1.11 114.33 DEFICE 1116 126 1.11 139.86 DEFICIAL LOCKER 145 84 0.75 63.25 DEFICIAL LOCKER 144 91 0.75 68.25 DEFICIAL LOCKER 143 91 0.75 68.25 DEFICIAL LOCKER 144 86 0.75 64.55 DEFICIAL LOCKER 148 86 0.75 64.55 DEFICIAL LOCKER 148 125 0.75 104.25 DEFICIAL LOCKER 145 0.75 10	OFFICE	151A	149	1.11	165.39
DEFICE 106 114 1.11 126.54 DEFICE 111C 125 1.11 138.75 DEFICE 111G 126 1.11 138.75 DEFICE 111G 126 1.11 139.85 DEFICE 111G 126 1.11 139.85 DEFICIAL LOCKER 145 84 0.75 63 DEFICIAL LOCKER 145 84 0.75 65.25 DEFICIAL LOCKER 144 86 0.75 65.25 DEFICIAL LOCKER 144 86 0.75 64.5 DEFICIAL LOCKER 145 0.75 64.5 DEFICIAL LOCKER 144 86 0.75 64.5 DEFICIAL LOCKER 145 0.75 64.5 DE	OFFICE	155A	115	1.11	127.65
DEFICE 111C 125 1.11 138.75 DEFICE 123A 103 1.11 114.33 DEFICE 111G 126 1.11 139.86 DEFICIAL LOCKER 145 84 0.75 63.25 DEFICIAL LOCKER 145 84 0.75 68.25 DEFICIAL LOCKER 143 91 0.75 68.25 DEFICIAL LOCKER 144 86 0.75 65.25 DEFICIAL LOCKER 144 86 0.75 64.5 DEFICIAL LOCKER 145 84 0.75 60.75 DEFICIAL LOCKER 145 81 0.75 10.4.25 DEFICIAL LOCKER 145 84 0.75 10.4.25 DEFICIAL LOCKER 145 81 0.75 10.4.25 DEFICIAL LOCKER 145 81 0.75 10.4.25 DEFICIAL LOCKER 145 84 0.75 10.4.25 DEFICIAL LOCKER 145 81 0.75 10.4.25 DEFICIAL LOCKER 145 84 0.75 10.4.25 DEFI	OFFICE	101B	131	1.11	145.41
DEFICE 123A 103 1.11 114.33 DEFICE 111G 126 1.11 139.86 DEFICIAL LOCKER 145 84 0.75 63 DEFICIAL LOCKER 143 91 0.75 68.25 DEFICIAL LOCKER 143 91 0.75 65.25 DEFICIAL LOCKER 144 86 0.75 65.25 DEFICIAL LOCKER 144 86 0.75 64.5 DEFICIAL LOCKER 145 87 65.25 DEFICIAL LOCKER 145 87 65.25 DEFICIAL LOCKER 145 87 65.25 DEFICIAL LOCKER 145 87 0.75 66.25 DEFICIAL LOCKER 145 0.75 60.75 DEFICIAL LOCKER 145 84 0.75 60.75 DEFICIAL LOCKER 145 86.50 DEFICIAL LOCKER 145 84 0.75 60.75 DEFICIAL LOCKER 145 84 0.75 60.75 DEFICIAL LOCKER 145 84 0.75 60.75 DEFICIAL LOCKER 145 86.50 DEFICIAL LOCKER 145 91 0.75 90.75 DEFICIAL LOCKER 145 91 1.15 DE	OFFICE	106	114	1.11	126.54
DEFICE 123A 103 1.11 114.33 DEFICE 111G 126 1.11 139.86 DEFICIAL LOCKER 145 84 0.75 63 DEFICIAL LOCKER 145 84 0.75 68.25 DEFICIAL LOCKER 143 91 0.75 68.25 DEFICIAL LOCKER 144 86 0.75 65.25 DEFICIAL LOCKER 144 86 0.75 64.5 DEFICIAL LOCKER 145 87 0.75 6.75 6.75 DEFICIAL LOCKER 143 91 0.75 60.75 DEFICIAL LOCKER 143 91 0.75 90.75 DEFICIAL LOCKER 145 91 0.75 90.75 DEFICI	OFFICE	111C	125	1.11	138.75
DEFICIAL LOCKER 145 DEFICIAL LOCKER 147 DEFICIAL LOCKER 148 149 10.75 68.25 DEFICIAL LOCKER 144 86 0.75 64.25 DEFICIAL LOCKER 142 87 0.75 64.25 DEFICIAL LOCKER 144 86 0.75 64.25 DEFICIAL LOCKER 142 87 0.76 0.76 DEFICIAL LOCKER 143 86 0.75 64.25 DEFICIAL LOCKER 144 86 0.75 64.25 DEFICIAL LOCKER 144 86 0.75 64.25 DEFICIAL LOCKER 143 86 0.75 141 0.75 0.75 DEFICIAL LOCKER 143 91 0.75 0.75 DEFICIAL LOCKER 136 DEFICIAL LOCKER 143 91 0.75 0.75 DEFICIAL LOCKER 136 DEFICIAL LOCKER 137 0.75 0.75 DEFICIAL LOCKER 137 0.75 DEFICIAL LOCKER 137 0.75 DEFICIAL LOCKER 137 0.75 DEFICIAL LOCKER 143 0.75 DEFICIAL LOCKER 144 86 0.75 DEFICIAL LOCKER 150 DEFICIAL COCKER 150 DEFICIAL LOCKER 150 DEFICAL COCKER 150 DEFICAL COCKER	OFFICE	123A	103	1.11	114.33
DEFICIAL LOCKER 143 91 0.75 68.25 DEFICIAL LOCKER 144 86 0.75 64.5 DEFICIAL LOCKER 144 86 0.75 66.25 DEFICIAL LOCKER 144 86 0.75 66.25 DEFICIAL LOCKER 144 86 0.75 64.5 DEPEN OFFICE 156D 161 0.98 157.78 PARTY ROOM 127 607 1.23 746.61 PARTY ROOM STORAGE 1126 112 0.63 70.56 PENALTY 120E 47 3.01 141.47 PENALTY 120D 53 2.68 142.04 PENALTY 120D 53 2.68 142.04 PENALTY 120C 50 2.68 134 PENALTY 120C 130 14 14 14 14 14 15 16 16 16 17 16 16 16 17 16 16 16 17 16 16 17 16 16 16	OFFICE	111G	126	1.11	139.86
DEFICIAL LOCKER 143 91 0.75 68.25 DEFICIAL LOCKER 144 86 0.75 64.5 DEFICIAL LOCKER 144 86 0.75 66.25 DEFICIAL LOCKER 144 86 0.75 66.25 DEFICIAL LOCKER 144 86 0.75 64.5 DEPEN OFFICE 156D 161 0.98 157.78 PARTY ROOM 127 607 1.23 746.61 PARTY ROOM STORAGE 1126 112 0.63 70.56 PENALTY 120E 47 3.01 141.47 PENALTY 120D 53 2.68 142.04 PENALTY 120D 53 2.68 142.04 PENALTY 120C 50 2.68 134 PENALTY 120C 130 14 14 14 14 14 15 16 16 16 17 16 16 16 17 16 16 16 17 16 16 17 16 16 16	OFFICIAL LOCKER	145	84	0.75	63
DEFICIAL LOCKER 144 86 0.75 64.5 DEPEN OFFICE 156D 161 0.98 157.78 DEPEN OFFICE 112 0.63 70.56 DEPEN OFFICE 150D 53 2.68 142.04 DEPEN OFFICE 150D 103 168 1.66 278.88 DEPEN OFFICE 150D 103 168 1.66 278.88 DEPEN OFFICE 150D 103 168 DEPEN OFFICE 150D 75 DEPEN OFFICE 15	OFFICIAL LOCKER	143	91		68.25
PREN OFFICE 156D 161 0.98 157.78 PARTY ROOM 127 607 1.23 746.61 PARTY ROOM 5TORAGE 7126 112 0.63 70.56 PENALTY 120E 47 3.01 141.47 PENALTY 120D 53 2.68 142.04 PENALTY 120C 50 2.68 134 PENALTY 120C 50 2.68 134 PENALTY 120C 50 2.68 134 PENALTY 120C 50 3.68 1.66 278.88 PENALTY 120C 50 3.78 PENALT	OFFICIAL LOCKER	142	87	0.75	65.25
PARTY ROOM PARTY ROOM STORAGE PARTY ROOM STORAGE T126 T126 T120 T120 T120 T120 T120 T120 T120 T120	OFFICIAL LOCKER	144	86	0.75	64.5
PARTY ROOM PARTY ROOM STORAGE PENALTY PENALTY 120E PENALTY 120E PENALTY 120D 153 168 141.47 PENALTY 120C 150 168 134 168 166 166 178.88 PENALTY 166 178.88 PENALTY 166 178.88 PENALTY 120C 150 166 141.47 147 146 167 168 168 168 169 167 168 168 169 169 169 169 169 169 169 169 169 169					157.78
PENALTY 120E 47 3.01 141.47 PENALTY 120D 53 2.68 142.04 PENALTY 120C 50 2.68 134 RAPID HANDS TRAINING 103 168 1.66 278.88 RAPID SHOT TRAINING 104 537 1.66 891.42 RESTROOM 156 564 0.66 372.24 RESTROOM 138A 180 0.98 176.4 RESTROOM 134A 206 0.98 201.88 RESTROOM 131A 109 0.98 106.82 RESTROOM 157A 204 0.98 199.92 RESTROOM 110B 205 0.98 200.9 RESTROOM 111B 61 0.98 59.78 RESTROOM 112B 199 0.98 195.02 RESTROOM 112B 199 0.98 195.02 RESTROOM 126 1350 0.43 580.5 RESTROOM 157 333 0.95 316.35 RESTROOM 157 138 102 0.75 76.5 RESTROOM 157 138 102 0.75 76.5 RESTROOM 138B 121 0.75 90.75 RESTROOM 138B 139 0.75 104.25 RESTROOM 136 868.56 RESTROOM 112C 423 0.75 317.25 RESTROOM 112C 423 0.75 RES	PARTY ROOM	127	607	1.23	746.61
PENALTY 120D 53 2.68 142.04 PENALTY 120C 50 2.68 134 RAPID HANDS TRAINING 103 168 1.66 278.88 RAPID SHOT TRAINING 104 537 1.66 891.42 RESTROOM 156 564 0.66 372.24 RESTROOM 138A 180 0.98 176.4 RESTROOM 135A 211 0.98 206.78 RESTROOM 131A 109 0.98 106.82 RESTROOM 157A 204 0.98 199.92 RESTROOM 110B 205 0.98 200.98 RESTROOM 111B 61 0.98 59.78 RESTROOM 112B 199 0.98 195.02 RESTROOM 112B 199 0.98 195.02 RESTROOM 126 1350 0.43 580.5 RESTROOM 127 131 136.53 RESTROOM 138A 199 0.98 195.02 RESTROOM 111B 54 0.75 60.75 RESTROOM 111C 305 0.75 228.75 RESTROOM 111C 305 0.75 317.25 RESTROOM 112C 423 0.75 RESTROO	PARTY ROOM STORAGE	T126	112	0.63	70.56
PENALTY 120C 50 2.68 134 RAPID HANDS TRAINING 103 168 1.66 278.88 RAPID SHOT TRAINING 104 537 1.66 891.42 RECEPTION 156 564 0.66 372.24 RESTROOM 138A 180 0.98 176.4 RESTROOM 135A 211 0.98 206.78 RESTROOM 131A 109 0.98 106.82 RESTROOM 131A 109 0.98 106.82 RESTROOM 110B 205 0.98 200.9 RESTROOM 111B 61 0.98 59.78 RESTROOM 112B 199 0.98 195.02 RESTROOM 112B 199 0.98 195.02 RECURITY OFFICE 161 123 1.11 136.53 RECURITY OFFICE 161 123 1.11 33.25 SHOWER 139B 305 0.75 228.75	PENALTY	120E	47	3.01	141.47
RAPID HANDS TRAINING RAPID SHOT TRAINING RAPID SHOT TRAINING RECEPTION RECEPTION RESTROOM RES	PENALTY	120D	53	2.68	142.04
RAPID SHOT TRAINING RECEPTION RECEPTION RESTROOM	PENALTY	120C	50	2.68	134
RECEPTION 156 564 0.66 372.24 RESTROOM 138A 180 0.98 176.4 RESTROOM 135A 211 0.98 206.78 RESTROOM 134A 206 0.98 201.88 RESTROOM 131A 109 0.98 106.82 RESTROOM 131A 109 0.98 199.92 RESTROOM 157A 204 0.98 199.92 RESTROOM 110B 205 0.98 200.9 RESTROOM 110B 205 0.98 200.9 RESTROOM 111B 61 0.98 59.78 RESTROOM 112B 199 0.98 195.02 RESTROOM 112B 199 0.98 195.02 RECURITY OFFICE 161 123 1.11 136.53 RECURITY OFFICE 161 123 1.11 136.53 RECURITY OFFICE 167 333 0.95 316.35 RECURITY OFFICE 167 333 0.95 316.35 RECURITY OFFICE 139B 305 0.75 228.75 RECURITY OFFICE 131B 54 0.75 60.75 RECURITY OFFICE 131B 54 0.75 60.75 RECURITY OFFICE 138B 121 0.75 90.75 RECURITY OFFICE 138B 121 0.75 90.75 RECURITY OFFICE 138B 139 0.75 104.25 RECURITY OFFICE 138B 139 0.75 104.25 RECURITY OFFICE 135B 139 RECURITY OFFICE 135B 139 RECURITY OFFICE 135B 13	RAPID HANDS TRAINING	103	168	1.66	278.88
RESTROOM 138A 180 0.98 176.4 RESTROOM 135A 211 0.98 206.78 RESTROOM 134A 206 0.98 201.88 RESTROOM 131A 109 0.98 106.82 RESTROOM 157A 204 0.98 199.92 RESTROOM 110B 205 0.98 200.98 RESTROOM 111B 61 0.98 59.78 RESTROOM 112B 199 0.98 195.02 RESTROOM 112B 199 0.98 195.02 RECURITY OFFICE 161 123 1.11 136.53 RECURITY OFFICE 161 123 1.11 136.53 RECURITY OFFICE 167 333 0.95 316.35 RECURITY OFFICE 167 333 0.95 316.35 RECURITY OFFICE 159B 305 0.75 228.75 RHOWER 139B 305 0.75 228.75 RHOWER 131B 54 0.75 40.55 RHOWER 131B 54 0.75 40.55 RHOWER 135B 139 0.75 104.25 RHOWER 135B 139 0.75 104.25 RHOWER 135B 139 0.75 104.25 RHOWER ROOM 110C 305 0.75 228.75 RHOWER ROOM 110C 305 0.75 228.75 RHOWER ROOM 112C 423 0.75 317.25	RAPID SHOT TRAINING	104	537	1.66	891.42
RESTROOM 135A 211 0.98 206.78 RESTROOM 134A 206 0.98 201.88 RESTROOM 131A 109 0.98 106.82 RESTROOM 157A 204 0.98 199.92 RESTROOM 110B 205 0.98 200.98 RESTROOM 111B 61 0.98 59.78 RESTROOM 112B 199 0.98 195.02 RESTROOM 150D 75 1.11 83.25 RESTROOM 150D 75	RECEPTION	156	564	0.66	372.24
RESTROOM 134A 206 0.98 201.88 RESTROOM 131A 109 0.98 106.82 RESTROOM 157A 204 0.98 199.92 RESTROOM 110B 205 0.98 200.9 RESTROOM 111B 61 0.98 59.78 RESTROOM 112B 199 0.98 195.02 RESTROOM 112B 199 0.98 195.02 RESTROOM 112B 126 1350 0.43 580.9 RECURITY OFFICE 161 123 1.11 136.53 RECURITY OFFICE 161 123 1.11 136.53 RECURITY OFFICE 167 333 0.95 316.35 RHOW POWER 167 333 0.95 316.35 RHOWER 139B 305 0.75 228.75 RHOWER 134B 102 0.75 76.5 RHOWER 131B 54 0.75 40.5 RHOWER 131B 54 0.75 40.5 RHOWER 135B 139 0.75 104.25 RHOWER 135B 139 0.75 104.25 RHOWER ROOM 110C 305 0.75 228.75 RHOWER ROOM 110C 305 0.75 317.25 RHOWER ROOM 112C 423 0.75 317.25	RESTROOM	138A	180	0.98	176.4
RESTROOM 131A 109 0.98 106.82 RESTROOM 157A 204 0.98 199.92 RESTROOM 110B 205 0.98 200.98 RESTROOM 111B 61 0.98 59.78 RESTROOM 111B 61 0.98 195.02 RESTROOM 112B 199 0.98 195.02 REATING 126 1350 0.43 580.98 RECURITY OFFICE 161 123 1.11 136.53 RECURITY OFFICE 161 123 1.11 136.53 RECURITY OFFICE 167 333 0.95 316.35 RECURITY OFFICE 167 333 0.95 316.35 RECURITY OFFICE 167 333 0.95 316.35 RECURITY OFFICE 167 338 0.95 RECURITY OFFICE 167	RESTROOM	135A	211	0.98	206.78
RESTROOM 157A 204 0.98 199.92 RESTROOM 110B 205 0.98 200.98 RESTROOM 111B 61 0.98 59.78 RESTROOM 112B 199 0.98 195.02 REATING 126 1350 0.43 580.5 RECURITY OFFICE 161 123 1.11 136.53 RECURITY OFFICE 167 333 0.95 316.35 RHOW POWER 167 333 0.95 316.35 RHOWER 139B 305 0.75 228.75 RHOWER 134B 102 0.75 76.5 RHOWER 131B 54 0.75 40.5 RHOWER 131B 54 0.75 60.75 RHOWER 138B 121 0.75 90.75 RHOWER 135B 139 0.75 104.25 RHOWER 135B 139 0.75 104.25 RHOWER ROOM 110C 305 0.75 228.75 RHOWER ROOM 112C 423 0.75 317.25	RESTROOM	134A	206	0.98	201.88
RESTROOM 110B 205 0.98 200.98 RESTROOM 111B 61 0.98 59.78 RESTROOM 111B 61 0.98 59.78 RESTROOM 112B 199 0.98 195.02 REATING 126 1350 0.43 580.5 RECURITY OFFICE 161 123 1.11 136.53 RECURITY OFFICE 161 123 1.11 83.25 RECURITY OFFICE 167 333 0.95 316.35 RECURITY OFFICE 167 333 0.95 RECURITY OFFICE 167 335 RECURITY OFFICE 167 ARCHARACTE 167 ARCHAR	RESTROOM	131A	109	0.98	106.82
RESTROOM 111B 61 0.98 59.78 RESTROOM 112B 199 0.98 195.02 EATING 126 1350 0.43 580.5 ECURITY OFFICE 161 123 1.11 136.53 ERVER 150D 75 1.11 83.25 HOW POWER 167 333 0.95 316.35 HOWER 139B 305 0.75 228.75 HOWER 134B 102 0.75 76.5 HOWER 131B 54 0.75 40.5 HOWER 157B 81 0.75 60.75 HOWER 138B 121 0.75 90.75 HOWER 135B 139 0.75 104.25 HOWER ROOM 110C 305 0.75 228.75 HOWER ROOM 112C 423 0.75 317.25 KATE RENTAL 147 517 1.68 868.56 TAIR 2105 166 0.69 114.54	RESTROOM	157A	204	0.98	199.92
RESTROOM 112B 199 0.98 195.02 EATING 126 1350 0.43 580.5 ECURITY OFFICE 161 123 1.11 136.53 ERVER 150D 75 1.11 83.25 HOW POWER 167 333 0.95 316.35 HOWER 139B 305 0.75 228.75 HOWER 134B 102 0.75 76.5 HOWER 131B 54 0.75 40.5 HOWER 157B 81 0.75 60.75 HOWER 138B 121 0.75 90.75 HOWER 135B 139 0.75 104.25 HOWER ROOM 110C 305 0.75 228.75 HOWER ROOM 112C 423 0.75 317.25 KATE RENTAL 147 517 1.68 868.56 TAIR 2105 166 0.69 114.54	RESTROOM	110B	205	0.98	200.9
EATING 126 1350 0.43 580.5 ECURITY OFFICE 161 123 1.11 136.53 ERVER 150D 75 1.11 83.25 HOW POWER 167 333 0.95 316.35 HOWER 139B 305 0.75 228.75 HOWER 134B 102 0.75 76.5 HOWER 131B 54 0.75 40.5 HOWER 157B 81 0.75 60.75 HOWER 138B 121 0.75 90.75 HOWER 135B 139 0.75 104.25 HOWER ROOM 110C 305 0.75 228.75 HOWER ROOM 110C 305 0.75 317.25 KATE RENTAL 147 517 1.68 868.56 TAIR 2105 166 0.69 114.54	RESTROOM	111B	61	0.98	59.78
SECURITY OFFICE 161 123 1.11 136.53 SERVER 150D 75 1.11 83.25 SHOW POWER 167 333 0.95 316.35 SHOWER 139B 305 0.75 228.75 SHOWER 134B 102 0.75 76.5 SHOWER 131B 54 0.75 40.5 SHOWER 157B 81 0.75 60.75 SHOWER 138B 121 0.75 90.75 SHOWER 135B 139 0.75 104.25 SHOWER ROOM 110C 305 0.75 228.75 SHOWER ROOM 112C 423 0.75 317.25 SKATE RENTAL 147 517 1.68 868.56 STAIR 2105 166 0.69 114.54	RESTROOM	112B	199	0.98	195.02
ERVER 150D 75 1.11 83.25 HOW POWER 167 333 0.95 316.35 HOWER 139B 305 0.75 228.75 HOWER 134B 102 0.75 76.5 HOWER 131B 54 0.75 40.5 HOWER 157B 81 0.75 60.75 HOWER 138B 121 0.75 90.75 HOWER 135B 139 0.75 104.25 HOWER ROOM 110C 305 0.75 228.75 HOWER ROOM 112C 423 0.75 317.25 KATE RENTAL 147 517 1.68 868.56 TAIR 2105 166 0.69 114.54	EATING	126	1350	0.43	580.5
HOW POWER 167 333 0.95 316.35 HOWER 139B 305 0.75 228.75 HOWER 134B 102 0.75 76.5 HOWER 131B 54 0.75 40.5 HOWER 157B 81 0.75 60.75 HOWER 138B 121 0.75 90.75 HOWER 138B 121 0.75 90.75 HOWER 135B 139 0.75 104.25 HOWER ROOM 110C 305 0.75 228.75 HOWER ROOM 112C 423 0.75 317.25 KATE RENTAL 147 517 1.68 868.56 HOWER ROOM 114.54 HOWER ROOM 114.54 HOWER ROOM 114.54 HOWER ROOM 114.54 HOWER ROOM 1150 166 0.69 114.54	ECURITY OFFICE	161	123	1.11	136.53
SHOWER 139B 305 0.75 228.75 SHOWER 134B 102 0.75 76.5 SHOWER 131B 54 0.75 40.5 SHOWER 157B 81 0.75 60.75 SHOWER 138B 121 0.75 90.75 SHOWER 135B 139 0.75 104.25 SHOWER ROOM 110C 305 0.75 228.75 SHOWER ROOM 112C 423 0.75 317.25 SKATE RENTAL 147 517 1.68 868.56 STAIR Z105 166 0.69 114.54	ERVER	150D	75	1.11	83.25
SHOWER 134B 102 0.75 76.5 SHOWER 131B 54 0.75 40.5 SHOWER 157B 81 0.75 60.75 SHOWER 138B 121 0.75 90.75 SHOWER 135B 139 0.75 104.25 SHOWER ROOM 110C 305 0.75 228.75 SHOWER ROOM 112C 423 0.75 317.25 SKATE RENTAL 147 517 1.68 868.56 STAIR 2105 166 0.69 114.54	HOW POWER	167	333	0.95	316.35
SHOWER 131B 54 0.75 40.5 SHOWER 157B 81 0.75 60.75 SHOWER 138B 121 0.75 90.75 SHOWER 135B 139 0.75 104.25 SHOWER ROOM 110C 305 0.75 228.75 SHOWER ROOM 112C 423 0.75 317.25 SKATE RENTAL 147 517 1.68 868.56 STAIR Z105 166 0.69 114.54	HOWER	139B	305	0.75	228.75
SHOWER 157B 81 0.75 60.75 SHOWER 138B 121 0.75 90.75 SHOWER 135B 139 0.75 104.25 SHOWER ROOM 110C 305 0.75 228.75 SHOWER ROOM 112C 423 0.75 317.25 SKATE RENTAL 147 517 1.68 868.56 STAIR Z105 166 0.69 114.54	SHOWER	134B	102	0.75	76.5
SHOWER 157B 81 0.75 60.75 SHOWER 138B 121 0.75 90.75 SHOWER 135B 139 0.75 104.25 SHOWER ROOM 110C 305 0.75 228.75 SHOWER ROOM 112C 423 0.75 317.25 SKATE RENTAL 147 517 1.68 868.56 STAIR Z105 166 0.69 114.54	SHOWER	131B	54	0.75	40.5
SHOWER 138B 121 0.75 90.75 SHOWER 135B 139 0.75 104.25 SHOWER ROOM 110C 305 0.75 228.75 SHOWER ROOM 112C 423 0.75 317.25 SKATE RENTAL 147 517 1.68 868.56 STAIR Z105 166 0.69 114.54	SHOWER				60.75
SHOWER ROOM 110C 305 0.75 228.75 SHOWER ROOM 112C 423 0.75 317.25 SKATE RENTAL 147 517 1.68 868.56 STAIR Z105 166 0.69 114.54	SHOWER				90.75
SHOWER ROOM 112C 423 0.75 317.25 SKATE RENTAL 147 517 1.68 868.56 STAIR Z105 166 0.69 114.54	SHOWER	135B	139	0.75	104.25
KATE RENTAL 147 517 1.68 868.56 TAIR 2105 166 0.69 114.54	SHOWER ROOM	110 C	305	0.75	228.75
KATE RENTAL 147 517 1.68 868.56 TAIR 2105 166 0.69 114.54	SHOWER ROOM	112 C		0.75	317.25
STAIR Z105 166 0.69 114.54	SKATE RENTAL				868.56
	STAIR		166	0.69	114.54
		Z103	268	0.69	184.92
					159.39
					160.77

STEAM ROOM	111E	147	0.75	110.25
STEAM ROOM	111F	147	0.75	110.25
STORAGE	147A	110	0.63	69.3
STORAGE	128	183	0.63	115.29
STORAGE	121	720	0.63	453.6
STORAGE	154	348	0.63	219.24
STORAGE	164	261	0.63	164.43
STORAGE	101A	167	0.63	105.21
STORAGE	105B	76	0.63	47.88
STORAGE	115A	81	0.63	51.03
STORAGE	133	1425	0.63	897.75
STORAGE	168	1177	0.63	741.51
TEAM BENCH	120B	197	2.68	527.96
TEAM BENCH	120A	197	2.68	527.96
TELE/DATA	T152	93	0.95	88.35
TELE/DATA	T165	111	0.95	105.45
TELE/DATA	T116	97	0.95	92.15
TICKETING	150	137	1.68	230.16
FICKETING OFFICE	150B	126	1.68	211.68
REATMENT & BIKE ROOM	111	871	1.66	1445.86
TREATMENT ROOM	165B	112	1.66	185.92
/AULT	150A	121	0.63	76.23
/EST.	157C	36	0.66	23.76
/EST.	F156	106	0.66	69.96
/ESTIBULE	F105	210	0.66	138.6
/ESTIBULE	F101	216	0.66	142.56
/estibule	F103	178	0.66	117.48
/estibule	105	277	0.66	182.82
/estibule	F102	138	0.66	91.08
/IDEO EDITING	155C	127	1.11	140.97
/IDEO STORAGE	155B	118	0.63	74.34
/IDEO/STUDY	105A	329	1.11	365.19
/IDEO/STUDY	115	264	1.11	293.04
/ISITING TEAM LOCKER ROOM	165	733	0.75	549.75
/ISITING TEAM STORAGE	165A	153	0.63	96.39
/OMITORY	132	515	0.66	339.9
/OMITORY	119	423	0.66	279.18
/OMITORY	164	429	0.66	283.14
WMN DIR HOCKEY OPS	150K	112	1.11	124.32
WMNS ASST COACH	150J	157	1.11	174.27
WMNS ASST COACH	150L	158	1.11	175.38
WMNS ASST COACH	150M	112	1.11	124.32
WMNS HEAD COACH	150Q	320	1.11	355.2
WMNS RECRUIT LOUNGE	150N	153	0.73	111.69
WOMEN'S COACHES LOUNGE	118	204	0.73	148.92
WOMEN'S EQUIPMENT ROOM	113	318	0.63	200.34
WOMENS LOCKER ROOM	112D	1391	0.75	1043.25

BIM THESIS PROPOSAL

WOMEN'S RESTROOM	R129	264	0.98	258.72	
WOMEN'S RESTROOM	R154	160	0.98	156.8	
WOMENS TEAM LOUNGE	114	631	0.73	460.63	
WORK ROOM	156A	457	0.63	287.91	
	Totals	106160	1	69734.5	
		E Standard 90.1-2010 Arena used			

Room Name	Room #	Room NSF	Code Allowable W/SF	Code Allowable Wattage
BAND STORAGE	208	258	0.63	162.54
CONCESSION	228A	211	1.68	354.48
CONCESSION	221A	190	1.68	319.2
CONCESSION	217A	243	1.68	408.24
CONCESSION	210A	178	1.68	299.04
CONCESSION	202 A	204	1.68	342.72
CONCESSION	214A	207	1.68	347.76
CONCESSION B.O.H.	228	338	1.68	567.84
CONCESSION B.O.H.	221	308	1.68	517.44
CONCESSION B.O.H.	217	277	1.68	465.36
CONCESSION B.O.H.	210	316	1.68	530.88
CONCESSION B.O.H.	202	291	1.68	488.88
CONCESSION B.O.H.	214	295	1.68	495.6
CONCESSION STORAGE	228B	113	0.63	71.19
CONCIERGE	201	148	1.68	248.64
CURTAIN	213	46	0.63	28.98
CURTAIN	218	46	0.63	28.98
EAST CONCOURSE	Q214	3237	0.66	2136.42
ELECTRICAL	P227	162	0.95	153.9
ELECTRICAL	P222	191	0.95	181.45
ELECTRICAL	P209	92	0.95	87.4
ELECTRICAL	P203	254	0.95	241.3
ELEV. #1	E1.2	72	0.55	0
ELEV. #2	V203	109		0
ELEV. #2	V203 V202	84		0
ELEVATOR LOBBY	F203	235	0.64	150.4
FAMILY RESTROOM	R206	65	0.98	63.7
FAMILY RESTROOM	R200	98	0.98	96.04
FIRST AID	J232	312	1.66	517.92
ANITOR	J233	237	0.63	149.31
ANITOR	J215	92	0.63	57.96
OBBY	F202	3534.4	0.73	2580.112
OBBY	F205	3166	0.9	2849.4
OBBY	F219	4078	0.9	3670.2
MAIN ARENA	372	0	3.01	0
MECH.	T209	80	0.95	76
MECHANICAL	212	274	0.95	260.3
MENS RESTROOM	R234	307	0.98	300.86
MEN'S RESTROOM	R226	763	0.98	747.74
MEN'S RESTROOM	R215	248	0.98	243.04
MEN'S RESTROOM	R205	659	0.98	645.82
MT. NITTANY ROOM	230	1559	1.31	2042.29
NORTH CONCOURSE	Q201	4226	0.66	2789.16

${\bf Jeremy\ Heilman\ |\ Josh\ Progar\ |\ Nico\ Pugilese\ |\ James\ Rodgers}$

NO VELTY SALES	231A	160	1.68	268.8					
NOVELTY STORAGE	231	344	0.63	216.72					
PANTRY	229	285	0.99	282.15					
RESTAURANT SERVICE	220	1945	0.99	1925.55					
SOUTH CONCOURSE	Q209	4264	0.66	2814.24					
STAIR	Z202	245	0.69	169.05					
STAIR	Z201	413	0.69	284.97					
STAIR	Z203	234	0.69	161.46					
STAIR	Z205	173	0.69	119.37					
TICKETING	201A	215	1.68	361.2					
TICKETING	211	174	1.68	292.32					
VESTIBULE	F201	520	0.66	343.2					
VESTIBULE	F204	374	0.66	246.84					
VOM	Q207	166	0.66	109.56					
VOMITORY	Q205	100	0.66	66					
VOMITORY	Q204	98	0.66	64.68					
VOMITORY	Q203	101	0.66	66.66					
VOMITORY	Q202	99	0.66	65.34					
/OMITORY	Q217	70	0.66	46.2					
JOMITORY	Q216	75	0.66	49.5					
/OMITORY	Q213	100	0.66	66					
/OMITORY	Q215	109	0.66	71.94					
/OMITORY	Q211	99	0.66	65.34					
/OMITORY	Q212	100	0.66	66					
/OMITORY	Q210	99	0.66	65.34					
VOMITORY	Q208	167	0.66	110.22					
WEST CONCOURSE	Q206	1653	0.66	1090.98					
WOMEN'S R.R.	R204	771	0.98	755.58					
WOMEN'S RESTROOM	R233	372	0.98	364.56					
WOMEN'S RESTROOM	R223	764	0.98	748.72					
WOMEN'S RESTROOM WOMEN'S RESTROOM	R216 R207	262 707	0.98 0.98	256.76 692.86					
	Totals	43061.4		26.602					
Notes: ASHRAE Standard 90.1-2010 Class I Arena used									

Room Name	Room #	# Room NSF	Code Allowable W/SF	
VISITING COACH	225 A	98	1.11	108.78
BROADCAST BOOTH	225B	227	1.11	251.97
COACH	225C	161	1.11	178.71
PRESS ROOM	225	494	1.11	548.34
STAIR	Z303	234	0.69	161.46
MEN'S RESTROOM	R327	223	0.98	218.54
NOMEN'S RESTOOM	R326	222	0.98	217.56
ELECTRICAL	P324	127	0.95	120.65
KITCHEN	330	2749	0.99	2721.51
MEN'S RESTROOM	R306	185	0.98	181.3
ΓELE/DATA	T306	142	0.95	134.9
SUITE 1A	321	448	0.82	367.36
SUITE 1B	320	552	0.82	452.64
SUITE 2	317	477	0.82	391.14
SUITE 3	316	495	0.82	405.9
SUITE 4	314	495	0.82	405.9
SUITE 5	313	495	0.82	405.9
SUITE 6	312	495	0.82	405.9
SUITE 7	311	495	0.82	405.9
SUITE 8	310	495	0.82	405.9
SUITE 9	309	495	0.82	405.9
SUITE 10	308	495	0.82	405.9
SUITE LOUNGE	306	718	0.73	524.14
PANTRY	302	212	0.99	209.88
CONTROL ROOM	301	225	1.11	249.75
SUITE 11	307	477	0.82	391.14
SUITE 12A	305	588	0.82	482.16
SUITE 12B	304	624	0.82	511.68
WOMEN'S RESTROOM	R303	171	0.98	167.58
ELEV. #1	V301	71	0.05	1225
TELE/DATA	T315	130	0.95	123.5
ELECTRICAL	P315	123	0.95	116.85
MEN'S RESTROOM	R318	156	0.98	152.88
WOMEN'S RESTROOM	R319 J318	154 46	0.98 0.63	150.92 28.98
ANITOR STAIR	Z302	266	0.69	
	332		1.31	6982.3
CLUB DINING ROOM CLUB LOUNGE	334	5330 1991	0.73	1453.43
STAIR	2304	246	0.73	169.74
NORTH CONCOURSE	Q301	2425	0.66	1600.5
EAST CONCOURSE	Q301 Q304	1268	0.66	836.88
OGE BOX	322	1016	0.82	833.12
LOGE BOX	323	1018	0.82	826.56
JOL BOX	323	1000	0.82	620.30

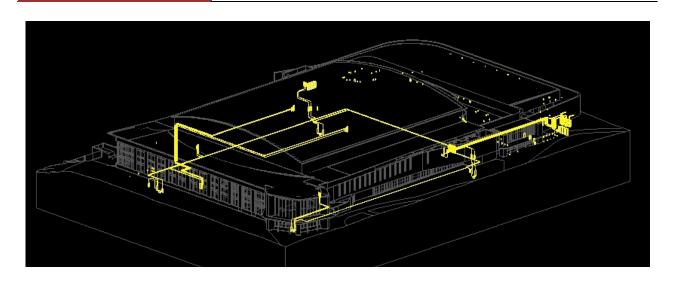
ELEV. #3 JAN CLOSET	V302 J330	86 34	0.63	0 21.42
PANTRY	330B		0.99	105.93
DISPLAY KITCHEN	330C	196	0.99	194.04
BAR	330D		1.68	221.76
ELEV. #2	V303		2.22	0
FAMILY RESTROOM	R324		0.98	71.54
MECHANICAL	M324		0.95	152
JAN CLOSET	J325	69	0.63	43.47
MECH ROOM	M323		0.95	176.7
MECH ROOM	M322	181	0.95	171.95
	Totals	28873	2	6456.4
		AE Standard 90.1-201 I Arena used	.0	

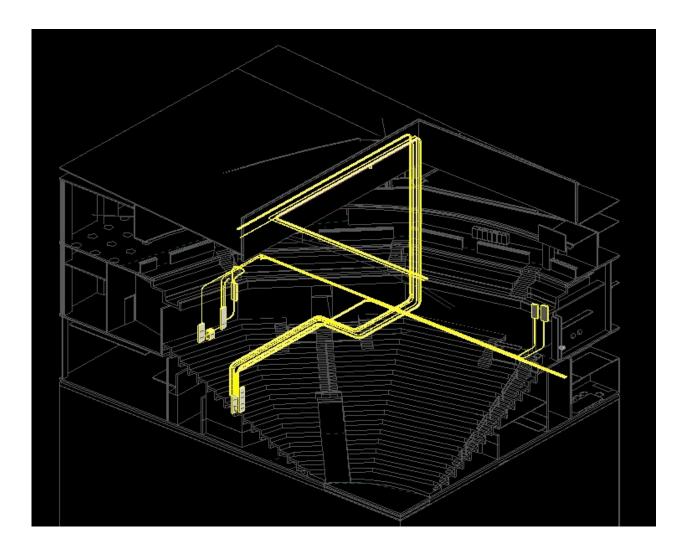
Electrical system Power Density

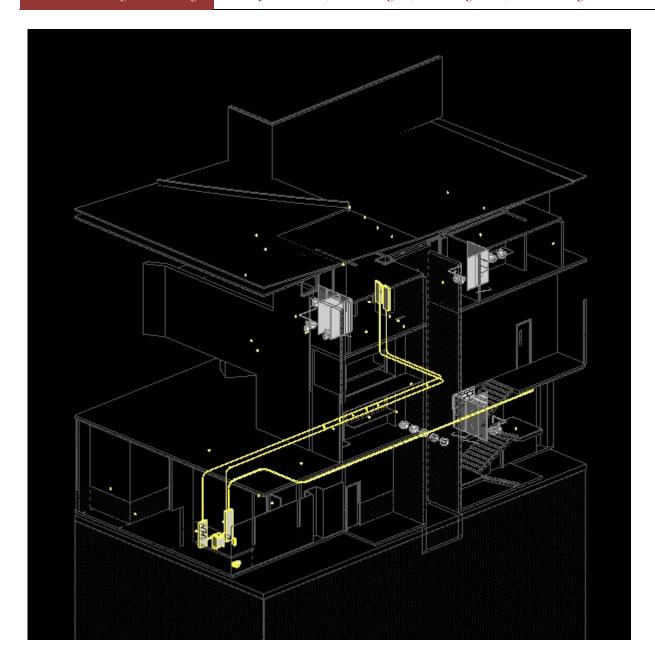
per Electrical handout by Prof. Dannerth assume 1VA/ft^2 for Design developlement phase

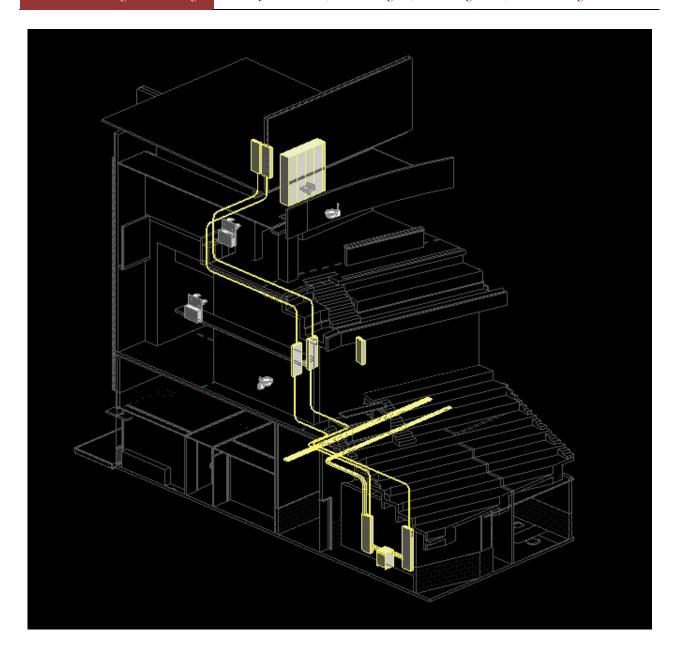
1 va/ft^2

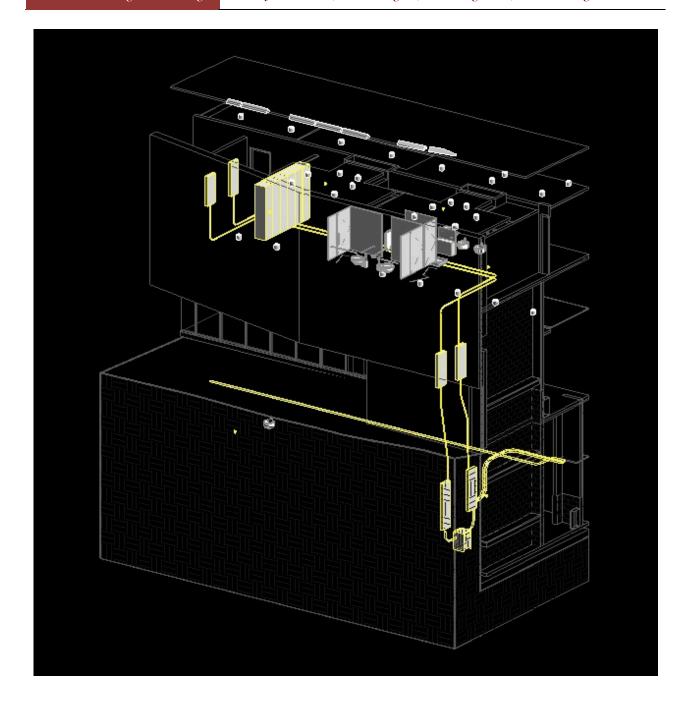
 Square Footage
 density


 Event Level
 106160
 106160


 Concourse Level
 43061.4
 43061.4


 Club Level
 28873
 28873


Total 178094.4 va


Light	ing Power Density Summary	SF	Allowable Watts
Exterior	Power Density		
	Exterior Tradable		6447.8
	Exterior East non-tradable		1560.0
	Exterior West non-tradable		2139.0
	Exterior South non-tradable		3465.0
	Exterior North non-tradable		2119.5
	Total Exterior Lighting Allowance		15731.3
Interior I	Power Density		
	Main Level	106160.0	169734.5
	Concourse Level	43061.4	38026.6
	Club Level	28873.0	26456.4
	Total Lighting Power	178094.4	234217.5
	Building Interior Lighting Power De	en 1.32	
	Total Electrical System Power		470004.4
	Iota	ls 178094.4	178094.4
	Building Interior Electrical Power D	Del 1	
Total Rui	ilding Power		
. Juli Du	MALTINICAL WILL CLOCK COLONIC	ls 178094.4	428043.2
	Notes		andard 90.1-2010 na used

APPENDIX L: General Lighting Information

	EXTERIOR LIGHTING POWER DENSITY	Code Allowable W, W/f, W/sf, Amount	Approximate: Area, Linear footage, amount	Total
Base Sit	e Allowance	750	1	750
Tradabl	e Surfaces			0
	Uncovered Parking Area	0.1	33790	3379
	Building Grounds			0
	Walkways less than 10 feet wide	0.08	1397	111.76
	walkways 10 feet or greater	0.16	2919	467.04
	stairways	1	0	0
	pedestrian tunnels	0.2	0	0
	landscaping	0.05	0	0
	Building Entrances			0
	Main Entries	30	54	1620
	Other Doors	20	6	120
	Entry Canopies	0.4	О	0
	Sales Canopies	0.8	0	0
	Outdoor Sales			0
	Open Areas	0.5	О	0
	Street Frontage fore vehicle sales	10	О	0
				6447.8
Nontrac	lable Surfaces			
	Building Façade			0
	East	0.15	10400	1560
	West	0.15	14260	2139
	North	0.15	14130	2119.5
	South	0.15	23100	3465
	ATM	270	О	0
	Entrances at guarded facilites	0.75	О	0
	Loading Area for Emergency Service Vehicles	0.5	0	0
	Drive-through Windows	400	О	0
	Parking near 24-hour retail	800	О	0

Notes: ASHRAE Standard 90.1-2010

Assumed Lighting Zone 3 from table 9.4.3A in ASHRAE Standard 90.1-20 $\,$

${\bf Jeremy\ Heilman\ |\ Josh\ Progar\ |\ Nico\ Pugilese\ |\ James\ Rodgers}$

INPUTS WATTS	1075	1075	10	75	162	6 20 0	_	162	Şî k	95.00	NVI 32	28
BALLAST	Philips - 78265F3	Philips - 78E65F3	Lutron Miume Assertes	la nga l	Integral	KDL-0350-A-00-277-00-0-00	QTP 1X2815/UW PSNNL	Integral	12v magnetic transformer	LED Driver	Sylvania - QTP 1X28T5/UNV I	integral LEO driver
IAMP	(1) Philips - N51000/BU/BT37/PS	(1) Philips - MS1000/BL/BT37/PS	LED, 2700K, 85 CR	Linear LED array, 2700k, 80 Oil	(1) Syvania - MCL5017.5/U/G12/940PB	Unear LED array, 85 CRI, 3000k	(3) Syvania - FP34/835/ECD	(1) Sylvania - MCL5077.5/U/612/940PB	USOmodule	LED module	(1) Sylvania - FP28/850/ECD	30 High output LEDs
DESCRIPTION	halide lamp. Beam spread with shutters with full acroally, Remote ballast	hdoor Soorts light with 1000 watt metal halfde land. Beam spreed is NEMA 442. Efture should be equiped with shutters with full block-out capability, Lamp mounted horkonsally, Remote beliest.	of round aperature LED downlight housed in againshiped soel case, shallow integral hear sink. Upper reflector is goun anodized afurnium, a leass is placed to obscure direct view of the LEDs. The Lower reflector is a compound parabolic shape dato spun anodized afurnium.	Dehuded auminum housing, die-formed abuninum glavenbad, and oddrolled stoel internal components. Dehuded abuninum op Sc Linear LID array, 2700k, 80 GB refector, I. LED linear array module per 1º section	ühe voltage trask mounted floodigint, containsa 150 watt ceranic metai halide larro, The reflector fis roadionality aymmetrical. Baltast. (1) Sphania - MCLSOTZ-S/LJG12/94078 fis housed in a tracktoor located on the track.	LED Invair array with precision made optical surround utiliting refaction to definitude light; returned attention heat sink and optic Unear LED array, 85 CRI, 3000k housing. Estruided impact resistant arrylic outer protective len. Provides with accessory contident part number VCP-02-300.	highede linear flourexent finance, betruded aluminum body with the veroper discuss ends. Stahless steel frame and sorews. Capable of susporting 11,000 lb. Housing is gasleeted with allicome nuber throughout.	Housing made of extruded aluminum and diseast aluminum. Reflector ishighly specular anodised parabolic shape. Groular Journess with Integral lamp shall ding provide precise glare control.	nounted round LED Roune, 1968 rated. Separate solied ompartment to prevent water intrudion in otlamp nent, 1,2v magnesht transformer required to function	property. Recessed 4.3" round downlight with reflecting kicker plate to achieve wall washing distribution.	Cold-rolled stell housing and ballast compartment. Matte white finish. Die-formed 20 gauge steel specular alumium reflector.	LED foodlight on emergency circuit in main arena. Deteat durnium construction. 3/4° emwith serrand teach lock em- mouing unit for predison mounting.
QUANTITY								,			,	,
CATALDS#	AEM-1-A-MAI	AEM-1-B-MADI-MW10-CBLKMP	BR6LED-25W-R35-M545-DH2-XX	LWG-8-LED-E-PAL-8-IND-277-2700-XX	VIVO 11/150W HIT 612 EVG 3CV WFL-5	The Lighting Guodie 5099-LA07-A-02-NAO-C-30	CSL86D4550-CT-00	MIROS 1/150W HIT 632 ENG IP54	HEBRIEB-9000-12V-14-00-SHO-TF	C4EO-WW-3DK-CL-W-00	Mark Architectural LCS2 4-1-15-E899-277-XX	UF2-08-U-TSA-030-4K-4X4-7
Manufacturer	Philips - Widelbe	Philips - Widelbe	Zumtobel	America	Sumtobel	The Lighting Gust	desgroten	Zumtobel	Winomalighting	Lightolier	Mark Architecture	Ughtolier
Storle	Arene Lights	Arena Lights	LED Downlight	LED Linear Wall Green	HID Track Mounted Roodight	Cantlever Mounted LED assyrretric walkwaher	Groundrecessed assymetrics designation	Wall mounted HID Spot	hgrade Round LED Foture - Wincons Lightling	4.5" LED round wathmashing r Lightolier	Unear flourescent cover	LED Floodight
Luminaire Schedule	¥	P5	æ	v	۵		v	_	_		~	ឆ

Table 89: Light Loss Factors

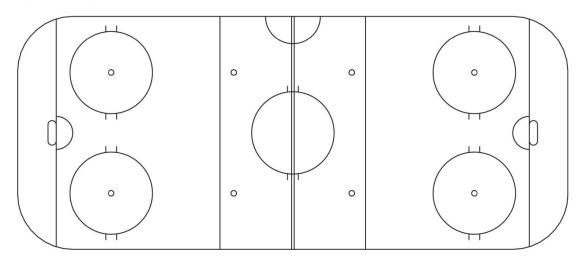
	l	ight Los	s Factor						
Luminaire Type	A1	A2	В	С	D	F	G	Н	E1
Luminaire Ambient Temperature	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lamp Lumen Depreciation	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Luminaire Dirt Depreciation	Luminaire Dirt Depreciation 0.91 <t< td=""><td>0.91</td></t<>		0.91						
Ballast Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Equipment Operating Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Total Light Loss Factor	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73

Best Lighting Practices: Ice Hockey/Roller Hockey National Championship Final Site

Summary: Following these recommended best practices will help ensure quality of light needed for safety of participants, enjoyment of spectators, and quality national championship final site television broadcasts, as required.

Horizontal light levels: 125 footcandles

Horizontal uniformity: 1.5:1


Vertical light levels: 125 footcandles to center main side high camera

75 footcandles to end line camera

Vertical uniformity: 1.5:1 to main camera 2.5:1 to end line camera

Grid spacing: 14 ft x 14 ft

Typical facility layout:

- 1. For new facilities or upgrades, it is recommended to consult a lighting professional for optimal luminaire placement and catwalk locations.
- Optimal luminaire placement, mounting heights, and catwalk locations will impact playability and minimize glare and skip glare.
- 3. To achieve required vertical footcandles, some lights must be mounted beyond the sides and ends of boards.
- 4. As a general rule, due to mounting heights, lower wattage luminaires are used, commonly 1000 watt.

©2008, 2011 National Collegiate Athletic Association L-1753-2

APPENDIX M: Catalog Information

Kawneer Wall System

Inside/outside-glazed 1600 Wall System®3 from yesterday's pioneer and today's leader provides everything you ever wanted in curtain wall systems. 1600 Wall System®3 incorporates inside glazing and the patented IsoStrut® Thermal Break to provide first-rate structural capability, outstanding thermal performance and installation economies. And it's versatile enough for low-rise, high-rise and monumental curtain wall applications—from offices to hospitals and government buildings to art centers.

Performance

Thermal and wind-load requirements are increasing at both federal and state levels. 1600 Wall System®3 has been developed as a response to the need for a true thermally broken system with greater structural performance. The patented IsoStrut® method is used within the mullions of the inside or outside glazed curtain wall system to create a continuous thermal barrier, which substantially reduces thermal transmission and improves condensation resistance and

structural performance. IsoStrut® achieves a high-strength bond between the interior and exterior aluminum and the thermal isolator, which creates a composite assembly for increased structural performance. 1600 Wall System®3 has been tested in accordance with all major standards for curtain walls:

Air Infiltration ASTM F283 Static Water Penetration ASTM E331 Dynamic Water Penetration AAMA 501.2 Thermal Transmittance AAMA 1503.1 Structural Performance ASTM E330 Seismic

UBC Section No. 2334, (H) 2

(Phase I, Phase II)

Economy

Inside-glazed 1600 Wall System®3 provides a major reduction in installation costs and re-glazing is much easier and less costly. 1600 Wall System®3 is part of Kawneer's 1600 Wall series and is fully compatible and interchangeable with 1600 Wall System®1 and 1600 Wall System®2. Standardization of overall depths to 6" (152.4) and 7-1/2" (190.5) means fewer parts to inventory and simplified work for architects.

In addition, the IsoStrut® vertical mullion reduces labor costs because the mullion, cover and thermal isolator are integral. There are no

vertical pressure plates, screws, thermal separators or snap-on covers to install. Further labor savings can be gained by pre-installing horizontal pressure plates. Outside glazing can easily be achieved by installing the pressure plates from the outside after the glass is in place. This option is often used in spandrel areas, and reglazing can be done from the outside without disrupting the building occupants.

One Ballantyne, Ballantyne Corporate Park, Charlotte, NC Architect: TBA2 Architects, Charlotte, NC Glazing Contractor: Cabarrus Glass Company, Inc., Concord, NC

Aesthetics

1600 Wall System®3 gives designers the greater flexibility of a true inside/outside glazed system, which allows for different exterior and interior finishes, and creates unlimited design possibilities with associated cost savings. Construction flexibility allows a structural silicone glazing option. 1600 Wall System®3 has no exposed fasteners, and a 1600 GLASSvent™ option offers designers a concealed ventilator with uninterrupted sightlines.

For the Finishing Touch

Permanodic® Anodized finishes are available in Class I and Class II in seven different color choices.

Painted finishes, including fluoropolymer, that meet or exceed AAMA 2605 are offered in many standard choices and an unlimited number of specially-designed colors.

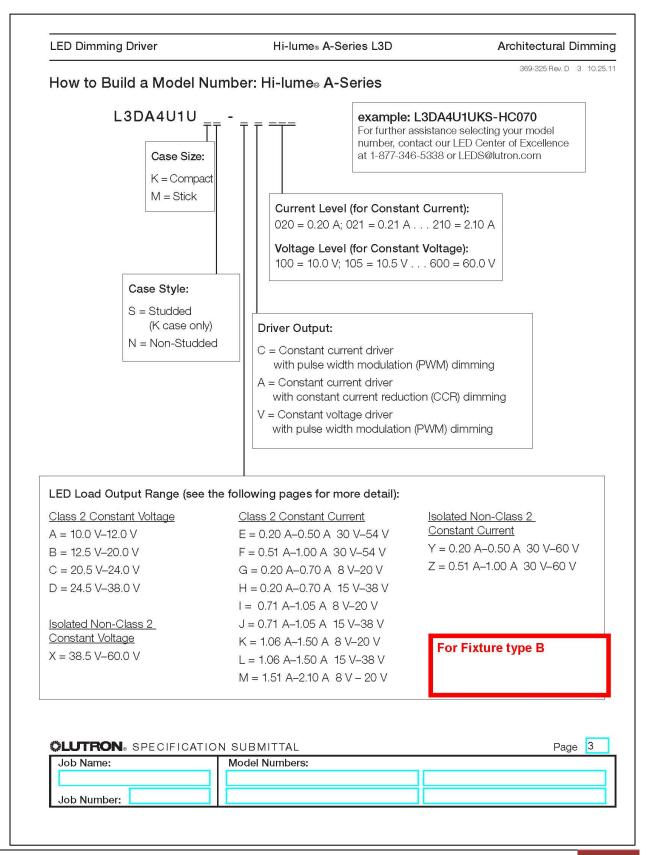
Solvent-free powder coatings add the "green" element with high performance, durability and scratch resistance that meet the standards of AAMA 2604.

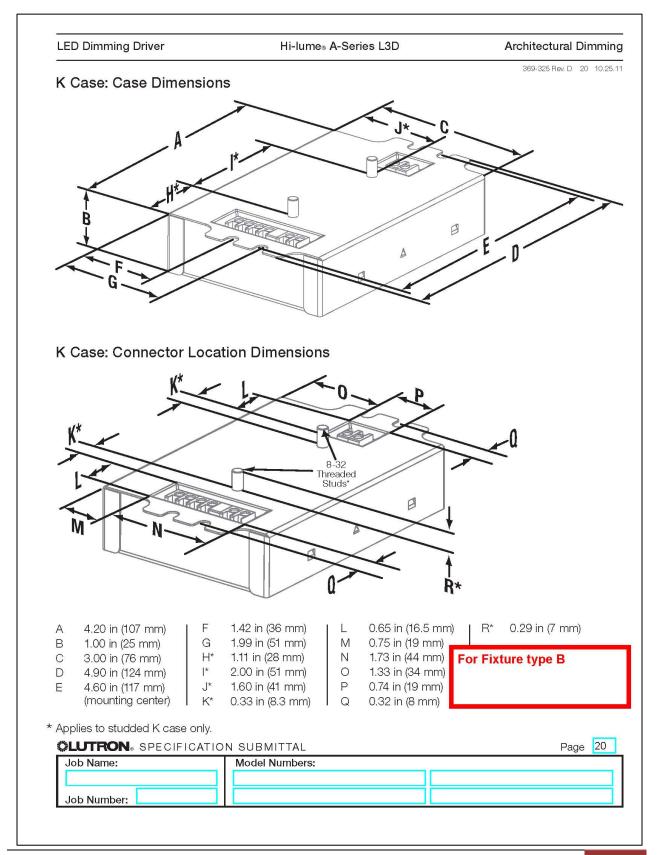
Note: Numbers in parentheses () are millimeters unless otherwise noted.

Kawneer Company, Inc. Technology Park / Atlanta 555 Guthridge Court Norcross, GA 30092

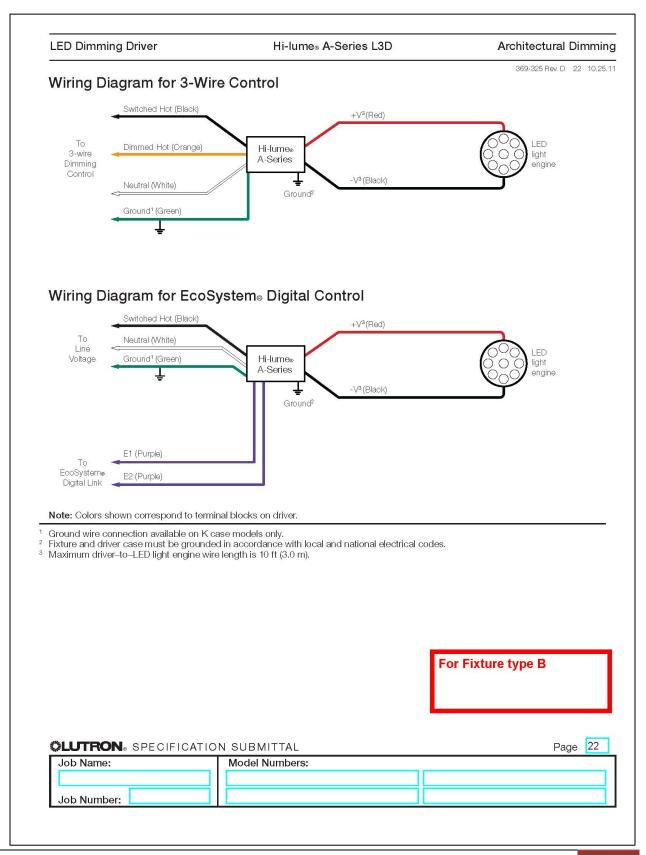
kawneer.com 770 . 449 . 5555

© Kawmoor Company, Inc 2007 LITHO INUS.A. Form No. 07-2040


Lighting Cut Sheets


LED Dimming Driver Hi-lume_® A-Series L3D Architectural Dimming 369-325 Rev. D 1 10.25.11 Hi-lume® A-Series Driver Overview EcoSystem_® or 3-wire control Hi-lume A-Series Hi-lume® A-Series Driver is a high-performance LED driver that provides smooth, continuous 1% dimming for virtually any LED fixture, whether it requires con-● Hot stant current or constant voltage. It is the most versatile LED driver offered today due to its compatibility with a wide variety of LED arrays, multiple form factors, and numerous control options. C +1-800-523-9466 dmming by Features • Continuous, flicker-free dimming from 100% to 1%. Hi-lume® A-Series, case type K Compatible with Energi Savr Node™ with EcoSystem® 3.00 in (76 mm) W x 1.00 in (25 mm) H x unit, GRAFIK Eye® QS control unit, PowPak™ dimming module with EcoSystem®, and Quantum® 4.90 in (124 mm) L systems, allowing for integration into a planned or existing EcoSystem® lighting control solution. Please see chart at the end of this document or contact Lutron for details regarding compatible controls. Standard 3-wire line-voltage phase-control technology for consistent dimming performance and compatibility with all Lutron® 3-wire fluorescent controls. Hi-lume® A-Series, case type M • Protected from miswires of input power to EcoSystem® control inputs. 1.18 in (30 mm) W x 1.00 in (25 mm) H x 14.25 in • 100% performance tested at factory. (362 mm) L • 100% burned in at factory. • A rated lifetime of 50,000 hours @ $t_c = 149 \, ^{\circ}\text{F}$ (65 $^{\circ}\text{C}$). • UL recognized for United States and Canada. • FCC Part 15 compliant for commercial applications at 120 V \sim or 277 V \sim . • Pulse Width Modulation (PWM) or Constant Current Reduction (CCR) dimming methods available. See Application Note #360 for details. • For more information please go to: www.lutron.com/HilumeLED For Fixture type B **CLUTRON** SPECIFICATION SUBMITTAL Page Job Name: Model Numbers: Job Number:


Job Number:


Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

LED Dimming Driver Hi-lume® A-Series L3D Architectural Dimming 369-325 Rev. D 2 10.25.11 Specifications Performance Standards • Dimming Range: 100% to 1% Meets ANSI C62.41 category A surge protection \bullet Operating Voltage: 120-277 V \sim at 50/60 Hz standards up to and including 4 kV. • A rated lifetime of 50,000 hours @ t_c = 149 °F (65 °C). • FCC Part 15 compliant for commercial applications Contact Lutron for derating information. at 120 V \sim or 277 V \sim . • Patented thermal foldback protection Manufacturing facilities employ ESD reduction • LEDs turn on to any dimmed level without going practices that comply with the requirements of to full brightness. ANSI/ESD S20.20. • Nonvolatile memory restores all driver settings after Lutron_® Quality Systems registered to ISO power failure. 9001.2008. • Power Factor: >0.90 at 40 W • UL 8750 recognized. • Standby Power Consumption: < 1.0 W · Class 2 output available. • Total Harmonic Distortion (THD): <20% at 40 W • Models available to meet LED Driver requirements • Inrush Current: < 2 A for Energy Star 1.1. • Inrush Current Limiting Circuitry: eliminates circuit **Driver Wiring & Mounting** breaker tripping, switch arcing and relay failure. · Open circuit protected • Driver is grounded by a mounting screw to the · Short circuit protected grounded fixture (or by terminal connection on the • Turn-on time: ≤1 second K case). • PWM Dimming Frequency: 550 Hz • Terminal blocks on the driver accept one solid wire per terminal from 18 to 16 AWG (0.75 to 1.5 mm²). Environmental • Fixture must be grounded in accordance with local · Sound Rating: Class A. and national electrical codes. Relative Humidity: Maximum 90% non-condensing. • Maximum driver-to-LED light engine wire length is · Minimum operating ambient temperature 10 ft (3.0 m). $t_a = 32 \, ^{\circ}F \, (0 \, ^{\circ}C).$ For Fixture type B Page 2 **CLUTRON** SPECIFICATION SUBMITTAL Job Name: Model Numbers:

BIM THESIS PROPOSAL

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

LED Dimming Driver Hi-lume® A-Series L3D Architectural Dimming

369-325 Rev. D 23 10.25.11

Compatible Controls

- Guaranteed performance specifications with the controls listed in the chart below.
- For assistance selecting controls, contact our LED Center of Excellence at 1-877-346-5338 or LEDS@lutron.com

Product	Par	t Number	Fixtures	per Control	Measured Light Output Range
	120 V	277 V	120 V	277 V	
Nova T☆⊚	NTF-10-	NTF-10-277-	1 – 41	1 – 44	100% - 1%
	NTF-103P-	NTF-103P-277-	1 – 20	1 – 33	100% – 1%
Nova _®	NF-10-	NF-10-277-	1 – 41	1 – 44	100% – 1%
	NF-103P-	NF-103P-277-	1 – 20	1 – 33	100% - 1%
Vareo _®	VF-10-		1 – 20	-	100% - 1%
Skylark _®	SF-10P-	SF-12P-277-	1 – 20	1 – 33	100% – 1%
554	SF-103P-	SF-12P-277-3	1 – 20	1 – 33	100% – 1%
Diva⊚	DVF-103P-	DVF-103P-277-	1 – 20	1 – 33	100% - 1%
	DVSCF-103P-	DVSCF-103P-277-	1 – 20	1 – 33	100% – 1%
Ariadni₀	AYF-103P-	AYF-103P-277-	1 – 20	1 – 44	100% – 1%
Vierti₃	VTF-6A-	<u>'</u>	1 – 15	1 – 33	100% – 1%
Maestro _®	MAF-6AM-	MAF-6AM-277-	1 – 15	1 – 33	100% – 1%
	MSCF-6AM-	MSCF-6AM-277-	1 – 15	1 – 33	100% – 1%
Maestro Wireless₀	MRF2-F6AN-DV- 1		1 – 15	1 – 33	100% – 1%
RadioTouch _®	RTA-RX-F-		1 – 41	1 – 88	100% – 1%
Spacer System₀	SPSF-6A-	SPSF-6A-277-	1 – 15	1 – 33	100% - 1%
	SPSF-6AM-	SPSF-6AM-277-	1 – 15	1 – 33	100% – 1%
Lyneo _® Lx	LXF-103PL-	LXF-103PL-277-	1 – 20	1 – 33	100% – 1%
RadioRA₀ 2	RRD-F6AN-DV-	•	1 – 15	1 – 33	100% – 1%
HomeWorks	HQRD-F6AN-DV		1 – 15	1 – 33	100% – 1%
Interfaces ²	PHPM-3F-120		1 – 41		100% – 1%
	PHPM-3F-DV	•	1 – 41	1 – 88	100% – 1%
	GRX-FDBI-16A		1 – 41	1 – 88	100% - 1%
PowPak™ dimming Module with EcoSystem	RMJ-ECO32-DV-B		32 per EcoSystem link		100% – 1%
Energi Savr Node™ with EcoSystem⊚	QSN-1ECO-S, Q	SN-2ECO-S	64 per EcoSystem link		100% – 1%
GRAFIK Eye₃ QS with EcoSystem₅	QSGRJE, QSGRE		64 per Eco	oSystem link	100% – 1%
Quantum⊛	Various		64 per Eco	oSystem link	100% - 1%

¹ Fixtures per Control value assumes a 40 W fixture. Number of fixtures may be higher if wattag ganged. See control specification submittal sheet for details.

² For use with 3-wire controls or Commercial Systems, RadioRA_® Systems or Home Systems a NOTE: Contact Lutron Technical Support for derating rules when using wallbox controls on t multi-gang applications.

For the list of compatible controls, visit lutron.com/HiLumeLED and select "EcoSystem/3-wire Control Report Card."

CLUTRON . SPECIFICATIO	N SUBMITTAL	Page 23
Job Name:	Model Numbers:	
Job Number:		

For Fixture type B

LED Dimming Driver Hi-lume® A-Series L3D Architectural Dimming 369-325 Rev. D 24 10.25.11 EcoSystem_® Wiring Diagrams EcoSystem® Digital Link Overview • The EcoSystem® Digital Link wiring (E1 and E2) connects the digital ballasts and drivers together to form a lighting control system. • Each EcoSystem® Digital Link supports up to 64 digital ballasts, LED drivers or EcoSystem® Modules (e.g. **Driver Terminals** C5-BMJ-16A, C5-XPJ-16A), 32 occupancy sensors (64 occupancy sensors with Energi Savr Node™ with EcoSystem®), 16 daylight sensors, and 64 wallstations or IR receivers.* • Sensors do not directly connect to Hi-Lume® A-Series LED drivers. • E1 and E2 (EcoSystem® digital link wires) are polarity insensitive and can be wired in any topology. • An Energi Savr Node™ with EcoSystem® unit, GRAFIK Eye® QS control unit with EcoSystem®, PowPak™ dimming module with EcoSystem®, or Quantum® **Driver Terminals** system provides power for the EcoSystem® Digital Link and supports system programming.* To the EcoSystem® Digital Bus and additional drivers • All EcoSystem® Digital Link programming is completed and/or ballasts by using the Energi Savr App for Apple iPad, iPod Notes Touch or iPhone mobile digital devices, GRAFIK Eye® • The EcoSystem_® Digital Link Supply does not have QS with EcoSystem®, PowPak™ dimming module with EcoSystem®, or Quantum® System. to be located at the end of the Digital Link. EcoSystem_® Digital Link length is limited by the wire EcoSystem® Digital Link Wiring gauge used for E1 and E2 as follows: • Driver EcoSystem® Digital Link terminals only accept Wire Gauge Digital Link Length one 18 to 16 AWG (0.75 to 1.5 mm²) solid copper wire (max) 12 AWG 2200 ft • Make sure that the supply breaker to the Digital Driver 14 AWG 1400 ft and EcoSystem® Digital Link Supply is OFF when wiring. 16 AWG 900 ft Connect the two conductors to the two Digital Driver 18 AWG 550 ft terminals E1 and E2 as shown. Using two different colors for E1 and E2 will reduce Wire Size Digital Link Length confusion when wiring several drivers together. (max) • The EcoSystem® Digital Link may be wired Class 1 or 4.0 mm² 828 m IEC/PELV NEC® Class 2. Consult applicable electrical 2.5 mm² codes for proper wiring practices. For Fixture type B 1.5 mm² PowPak™ dimming module with EcoSystem® provides power for 1.0 mm² the EcoSystem® Digital Link and can support 32 digital ballasts, LED drivers or EcoSystem® Modules, 6 Wireless Occupancy Sensors, 0.75 mm² 1 Wireless Daylight Sensor, and 9 Pico Wireless Controllers. Apple, iPad, iPod Touch, and iPhone are trademarks of Apple Inc., registered in the U.S. and other countries. Page 24 **CLUTRON** SPECIFICATION SUBMITTAL Job Name: Model Numbers: Job Number:

BIM THESIS PROPOSAL

HPR Integrated Design

Jeremy Heilman | Josh Progar | Nico Pugilese | James Rodgers

LED Dimming Driver Hi-lume® A-Series L3D Architectural Dimming

ELECTRICIANS AND CONTRACTORS

Driver Leads

Maximum driver-to-LED light engine wire length is 10 ft (3.0 m).

Wiring and Grounding

Driver and lighting fixture must be grounded. Drivers must be installed per national and local electrical codes.

LED Load Replacement

For Class 2 rated drivers, the LED load can be changed while the driver is installed and powered.

Maximum Driver Operating Temperature

Driver case temperature (t_{\circ}) must not exceed UL conditions of acceptability in end product.

For 50,000 hour lifetime, driver case temperature (t $_{\circ}$) must not exceed 149 °F (65 °C).

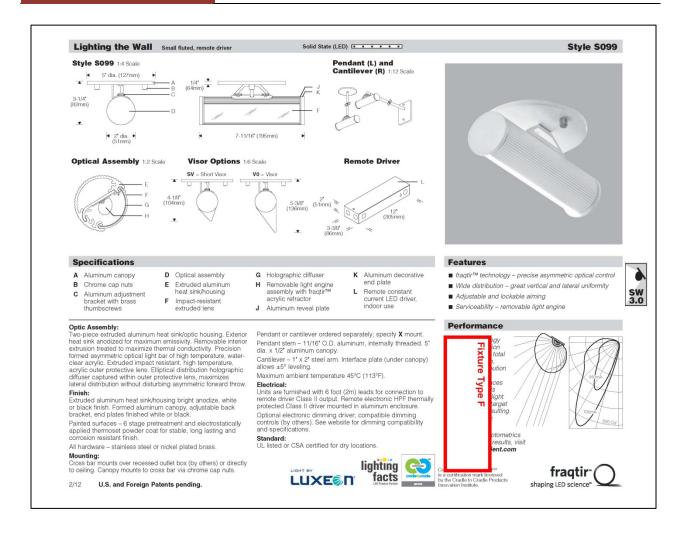
FACILITIES MANAGERS

SERVICE

Warranty

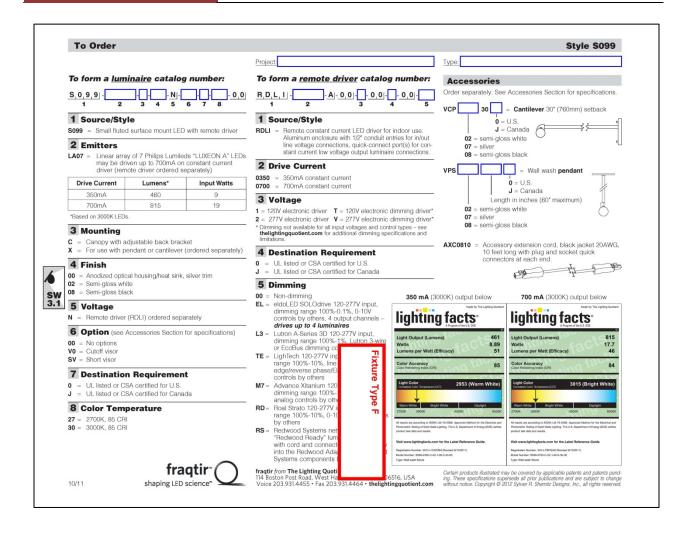
For warranty information, please visit http://www.lutron.com/TechnicalDocumentLibrary/ Ballast%20and%20Driver%20Warranty.pdf

Replacement Parts


When ordering Lutron® replacement parts please provide the full model number. Consult Lutron if you have any questions.

Further Information

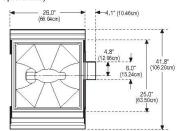
For further information, please visit us at www.lutron.com/hilumeLED or contact our LED Control Center of Excellence at 1.877.346.5338 or LEDs@lutron.com

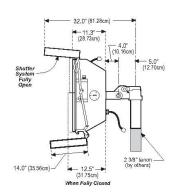

For Fixture type B

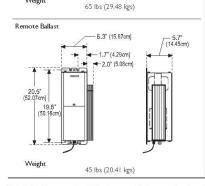
CLUTRON . SPECIFICATIO	Page 25	
Job Name:	Model Numbers:	
Job Number:		

BIM THESIS PROPOSAL

HPR Integrated Design




AE2 Series


Arena Eclipse Indoor Sports Floodlight, 1000W HID

Overall Dimensions For Reference Only Optic Assembly

Specifications

Housing

The Arena Edipse blackout luminaire is of heavy duty construction consisting of a separate optical assembly completely enclosed by an aluminum and steel housing. Standard unit constructed to IP52.

Optics (Reflector)
Reflectors shall be segmented, of high purity anodized aluminum, "Super Sheet" with inorganic dielectric coating with a minimum reflectivity of 94%

Lamp access is through the side so as not to disturb the luminaire aiming. Relamp door has a silicone gasket and is secured by four captive screws to ensure the optical assembly is sealed from particulate entry. Safety cable provided to retain the relamp door while relamping

Lens Door / Frame Assembly
Heat and impact resistant tempered glass lens is held in place by an extruded aluminum door frame with mitered comers. Lens assembly is sealed from particulate entry by means of a continuous extruded silicone gasket.

Lamp Socket

Pre-wired grip-type mogul base socket. Glass end of lamp is held in precise photometric alignment and protected from breakage by a Stabilux socket.

Lamp Socket Monitor

E39 position-oriented lamp socket, designed for high output lamps, will also accept any clear universal mount BT37 lamp. The Lamp Socket Monitor, a circular, externally adjustable socket mounting plate equipped with a built-in level is standard. Regardless of final fixture aiming adjustment of the high output lamp to proper burn position assures optimum performance.

Shutter System

Shutter system is provided to simulate instant on/off of the luminaire for special theatrical effects. Shutter motor is reversible high torque and permanently lubricated for long life. Motor is rated to operate at 120 volts from a tap on the ballast (no external power source required for shutter system operation). Fixture is capable of operating with the shutter closed indefinitely. Fail-safe mechanism extinguishes lamp should the shutter fail to dose within three seconds and is reset by turning primary voltage to the luminaire off and on, or by pressing re-set button on "Eclipse" module.

SilentGuard high power factor MPB remote indoor Edipse Series ballast is enclosed in an extruded aluminum Silente-uard right power factor PIPs remote indoor Eclipse Series Dallast is enclosed in an extruded alumnium housing. Core and coil are encapsulated in a polyester resin compound (standard SilentiGuard feature) to minimize ballast noise and ensure cooler operation. Ballast has Class H, 180°C (356°F) rated insulation. Crest factor does not exceed 1.8. Ballast starting current is less than operating with reliable starting down to -29°C (-20°F). Primary side of ballast is pre-wired with 6 ft. SO cord and twist-lock plug Modular receptades are provided to simplify secondary wiring of the HID socket and the motorized shutter Esternal "Eclipse" module featuring Red/Green LED status indicators of mechanical and electrical ballast function. Control override input jack allows direct control via hand-held controller.

Mounting
Cast aluminum mastfitter with Memory Aiming Device (MADJ) fits a 2-3/8" O.D. x 4" tall vertical tenon (by others).
Remote "MPB" ballast is adaptable for wall, platform or rack mounting.

Standard finish for luminaire and remote ballast shall be black UltraClad polyester powder coating 2.5 mil nominal thickness, electrostatically applied and oven cured. All components shall be thoroughly cleaned by a 5 stage pre-treatment process including iron phosphate bath and non-chromic acid etching stages, ensuring optimum performance characteristics.

Listings
UL/dUL Listed Luminaire, UL 1598, suitable for Dry Locations. The quality systems of this facility have been Registered by UL to the ISO 9000 Series Standards.

Warranty / Terms and Conditions

Standard 5 Year Limited Warranty

The current Philips Wide-Lite Warranty may be found current Standard Terms and Conditions of Sale (keywo All sales of items in this catalogue shall be subject to the Philips W. If you do not have a copy of the Philips Wide-Lite Warranty and Sto

Some luminaires use fluorescent or high intensity discharge (HID) lamps that contain small amounts of mercury Such lamps are labeled "Contain Mercury" and/or with the symbol Hg! Lamps that contain mercury must be disposed of in accordance with local requirements. Information regarding lamp recycle and disposal can be found at www.lamprecycle.org.

Philips Wide-Lite reserves the right to change specifications and dimensions without notice. Lamp and electrical specifications / availability subject to change by manufacturer without notice. Please refer to detailed specification sheets for additional information and spec details

1611 Clovis Barker Road • San Marcos, TX 78666 • Phone: 512.392.5821 • Fax: 512.753.1122 • www.wide lite.com © 2010 Philips Group. All rights reserved.

Bulletin No. WLSP0260B1110

Weight

AE2 Series Arena Eclipse Indoor Sports Floodlight, 1000W HID Job: Туре: Page 2 of 6 Fixture Series/Source-Wattage Optics (Reflector) Mounting Metal Halide with Shutter System less Shutter System MADJ Mastfitter M AE2M-1000 \Box A ☐ ALS Cast aluminum mastfitter with Memory Aiming Device □ в ☐ BLS \square N ☐ NLS ☐ ULS Remote Ballast Series Voltage Metal Halide with Shutter System **ऑ** 1000-MPBM ☐ 120ESCM-MW-6C-L2320P ☐ 120-MW-6C-L2320P Fixtures are furnished with regulating HPF single voltage ballasts: I20V, 208V, 277V, 347V or 480V. □ 208ESCM-MW-6C-L2320P ☐ 208-MW-6C-L2320P □ 277ESCM-MW-6C-L2320P ☐ 277-MW-6C-L2320P ☐ 347ESCM-MW-6C-L2320P ☐ 347-MW-6C-L2320P ☐ 480ESCM-MW-6C-L2320P ☐ 480-MW-6C-L2320P Options (Factory Installed) Accessories (Field Installed - Shipped Separately) ☐ BL ☐ F1-KIT Bi-Level (for Less Shutter System) Single Fuse Kit (120/277/347V) ☐ BLEM Bi-Level (for Shutter System) ☐ F2-KIT Double Fuse Kit (208/240/480V) ☐ F1 Single Fuse (120/277/347V) ☐ AMB-S Single Fixture Mounting Bracket □ F2 Double Fuse (208/240/480V) ☐ AMB-D Double Fixture Mounting Bracket Fixture Type A1, A2 ☐ AE2-STY-CBL Fixture Safety Cable ☐ SRB Strain Relief Bracket Philips Wide-Lite reserves the right to change specifications and dimensions without notice. Lamp and electrical specifications / availability subject to change by manufacturer without notice. Please refer to detailed specification sheets for additional information and spec details. 1611 Clovis Barker Road • San Marcos TX 78666 • Phone: 512.392.5821 • Fax: 512.753.1122 • www.wide lite.com © 2010 Philips Group. All rights reserved. Bulletin No. WLSP0260B1110

AE2 Series

Arena Eclipse Indoor Sports Floodlight, 1000W HID

Distribution Guide & Ballast Data (1,2)

Source Type ⁽¹⁾	Catalog Number	Reflector Type	Lamp ⁽²⁾ Envelope	.ies File Name	Ballast Type ⁽³⁾	ANSI Code	Line Current 120 / 208 / 277 / 347 / 480	Line Watts
МН	AE2M-1000	Α	BT37	Consult factory	CWA	M47 / H36	9.2 / 5.6 / 4.7 / 4.1 / 3.2 / 2.4	1080
WITI	AE2M-1000	В	BT37	Consult factory	CWA	M47 / H36	9.2 / 5.6 / 4.7 / 4.1 / 3.2 / 2.4	1080
	AE2M-1000	N	BT37	Consult factory	CWA	M47 / H36	9.2 / 5.6 / 4.7 / 4.1 / 3.2 / 2.4	1080
	AE2M-1000	U	BT37	Consult factory	CWA	M47 / H36	9.2 / 5.6 / 4.7 / 4.1 / 3.2 / 2.4	1080

- 1) MH = Metal Halide
- 2) The Arena Eclipse is designed and installed using high output BT37 clear lamps. Lamp socket will accept any universal burn BT37 clear lamp, however performance will be negatively affected.
- 3) CWA = Constant Wattage Autotransformer.

Beam Spreads and Distribution Patterns

BEAM PATTERNS Reflector Type	Wattage/ Source	Max Candle Power		Horizontal 10%	PREADS X Vertical 50% Beam Angle		
A	1000W MH	210,981	5 x 4	86° x 62°	44° x 23°		
B	1000W MH	399,650	4×2	67° × 26°	27° x 11°		
N	1000W MH	432,750	4×3	66° x 31°	27° x 12°		
U	1000W MH	115,000	4×2	67° x 28°	27° x 11°	ure Type A1, A	2

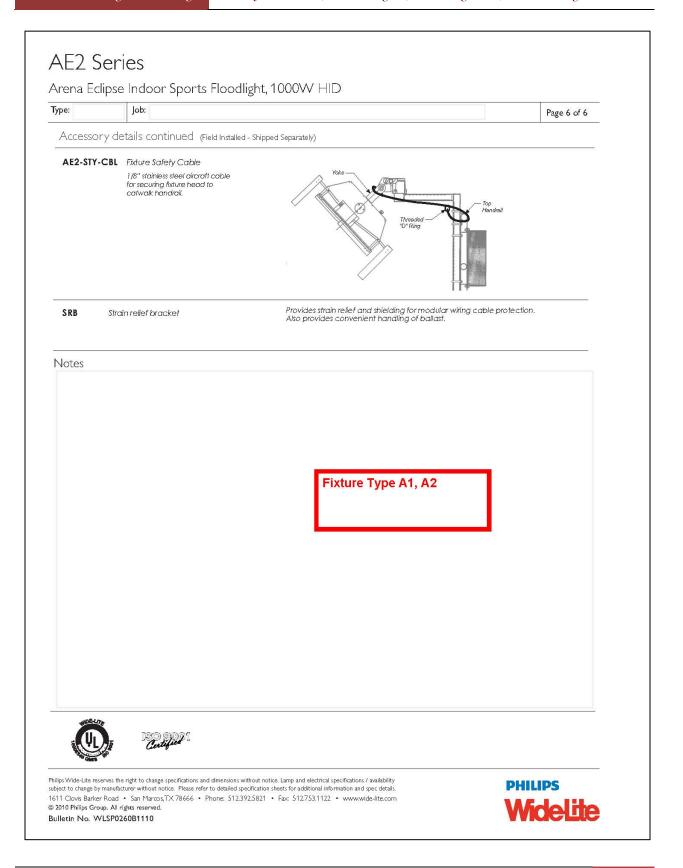
Philips Wide Lite reserves the right to change specifications and dimensions without notice. Lamp and electrical specifications / availability subject to change by manufacturer without notice. Please refer to detailed specification sheets for additional information and spec details. 1611 Clovis Barker Road • San Marcos,TX 78666 • Phone: 512.392.5821 • Fax: 512.753.1122 • www.wide-lite.com © 2010 Philips Group. All rights reserved.

Bulletin No. WLSP0260B1110

AE2 Series

Arena Eclipse Indoor Sports Floodlight, 1000W HID

Туре: Job: Page 4 of 6 Option details (Factory Installed) Bi-Level dimming ballast Bi-Level provides high/low level of lamp output with up to 50% power consumption. for Less Shutter Systems BLEM Bi-Level dimming ballast Zero crossover network avoids strobing for Shutter Systems and lamp dropout. Bi-Level feature is specified as a Ballast Option. Fuses are DTK/KLK 30 amp unless otherwise specified. F1 Single fuse (120/277/347V) F2 Double fuse (208/240/480V)


Fixture Type A1, A2

Philips Wide Lite reserves the right to change specifications and dimensions without notice. Lamp and electrical specifications / availability subject to change by manufacturer without notice. Please refer to detailed specification sheets for additional information and spec details. 1611 Clavis Barker Road • San Marcos, TX 78666 • Phone: 512.392.5821 • Fax: 512.753.1122 • www.wide-lite.com © 2010 Philips Group. All rights reserved.

Bulletin No. WLSP0260B1110

AE2 Series Arena Eclipse Indoor Sports Floodlight, 1000W HID Type: Page 5 of 6 Accessory details (Field Installed - Shipped Separately) Consists of 1 or 2 fuse holders and 1 or 2 KTK F1-KIT Single fuse kit (120/277/347V) 20 amp fuses. Field installed. F2-KIT Double fuse kit (208/240/480V) Bracket for mounting single fixture to catwalk. AMB-S Single fixture mounting bracket Handrail size must be specified. Consult factory. Shown with Fixture Safety Cables securing fixture at yoke to handrail of catwalk. Top Handrail Bottom Handrail Catwalk Floor All steel parts are finished Semi-gloss Black All hardware zinc plated. Ends of all exposed tubes are fitted with plastic closures. Ballasts mount to "Z-Spline" Brackets, attached to fixture mounting bar by U Bolts. Shipping Wt: 18 lbs. Shipped Unassembled. Bracket for mounting two stacked fixtures to catwalk. AMB-D Double fixture mounting bracket Handrail size must be specified. Consult factory. Shown with Fixture Safety Cables securing fixture at yoke to handrail of catwalk. Top Handrail Bottom Handrail Fixture Type A1, A2 All steel parts are finished Semi-gloss Black All hardware zinc plated. Ends of all exposed tubes are fitted with plastic closures. Ballasts mount to "Z-Spline" Brackets, attached to fixture mounting bar by U Bolts. Shipping Wt: 20 lbs. Shipped Unassembled. Philips Wide-Lite reserves the right to change specifications and dimensions without notice. Lamp and electrical specifications / availability subject to change by manufacturer without notice. Please refer to detailed specification sheets for additional information and spec details. 1611 Clovis Barker Road • San Marcos, TX 78666 • Phone: 512.392.5821 • Fax: 512.753.1122 • www.wide-lite.com © 2010 Philips Group. All rights reserved. Bulletin No. WLSP0260B1110

MARK® ARCHITECTURAL LIGHTING

The CVG2 Series

With its extremely shallow profile (2 inches deep), CVG2 is a perfect fit for most cove projects. Its forward-throw optics provide maximum ceiling illumination, while its white deflector reduces socket shadowing to a minimum.

CVG2 is available in T8, T5 or T5HO lamp configurations and in lengths from 2 to 8 feet.

Project:

Catalog Number:

DO NOT TYPE HERE. Autopopulated field.

Specification Features

Fabricated from 20-gauge, cold-rolled steel. Ballast compartments provided with 7/8"-diameter KOs at either end of housing for through wiring.

Finish

Matte white.

Reflector

Die-formed specular aluminum/matte white combination.

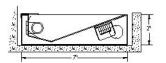
Deflector

20-gauge steel; matte white; tapered ends to reduce socket shadowing.

(1) T5, T5HO or T8 lamp. Consult factory for other lamps.

Ballast

Thermally protected Class P energysaving electronic ballast.


Mounting

Recessed indirect cove in 8', 6', 4', 3' and 2' sections. When required, housings are sized downward to accommodate T5 and T5HO lamps. (See chart.)

Certification

UL Listed, IBEW (Local 3) Union-made in the USA.

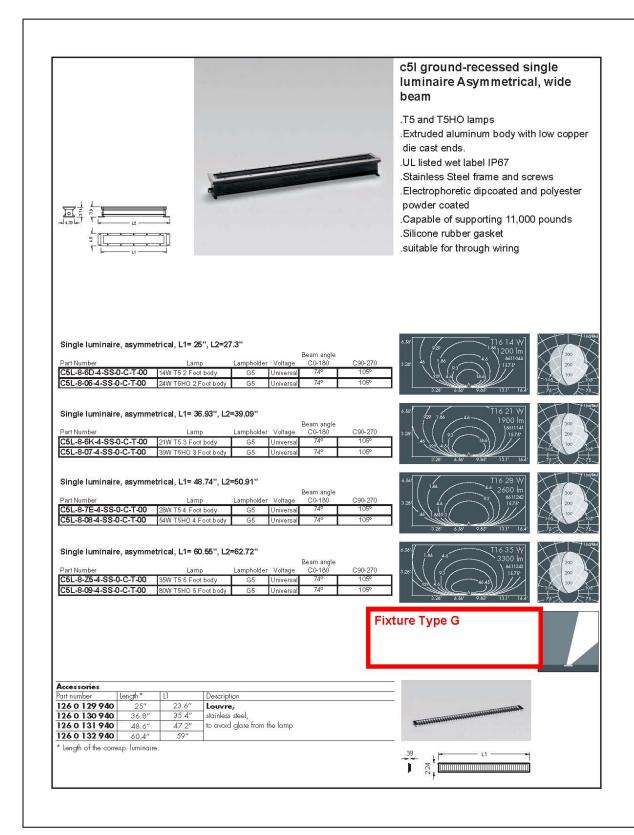
Technical Drawings

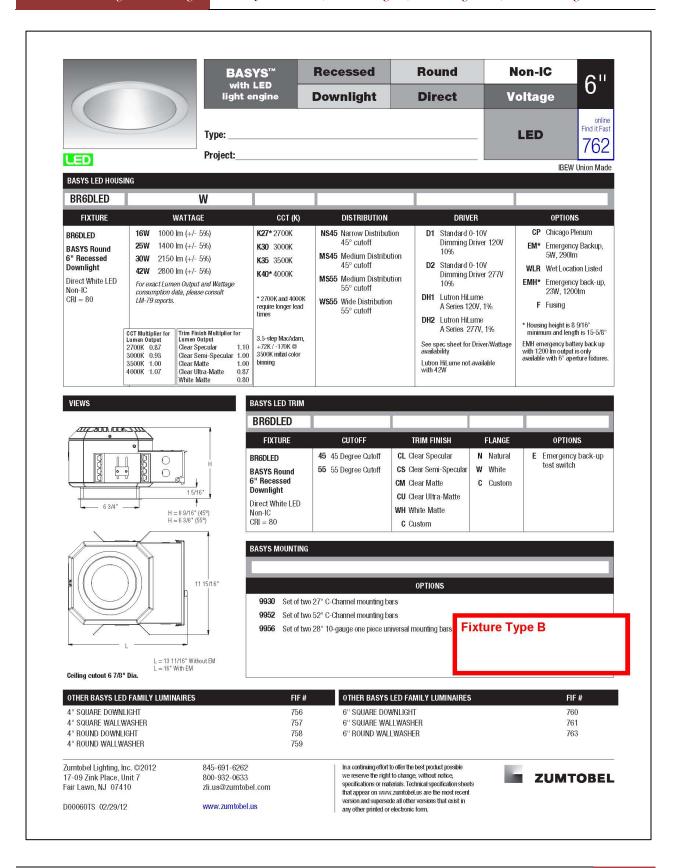
Fixture Type K

Ordering

Example: CG2 6 1T5HO EBPR 120

Sertes	Len	gth¹	No.of lamps/I	Lamp type²	Ballas	τ	Yoltage	Option	ns
CG2 CVG2	2	Nominal 2'	Numberoflamps	Lamp type ²	EBPR	Program rapid start (standard)	120	EMPK	Emergency battery pack
	3	Nominal 3'	1	TS	EBR	Instant start	277		
	4	Nominal4'		TS HO	EDB	Dimming (specify)	3473		
	6	Nominal 6'		T8	EDHL	Lutron Hi-Lume@dimming			
	8	Nominal8'			ED E10	Lutron Eco-10@dimming			
					ED ES	Lutron Eco System®			


- Notes
 1 See housing-length/lamp chart Consult factory for other lamps
- Consult factory for lampand ballast compatibility.


HOUSING LENGTHS BY LAMP TYPE ACTUAL LENGTH (T5/T5H0) 22 1/2" 34 5/16" 36" 46 1/8" 68 5/8" 92 1/4" 72" 96"

marklighting.com 3 Kilmer Rd, Edison NJ 08817

T (732) 985 26 00 F (732) 985 8441

@Acuity Brands Lighting, Inc. All Rights Reserved. We reserve the right to change design, materials and finish in any way that will not alter installed appearance or reduce function and performance.

1) Housing - Enclosed octagonal housing is of 20-gauge galvanized steel to diminish inter-reflected light within the housing.

Shallow integral heat sink rests on top of the housing. Innovative thermal design provides increased heat dissipation allowing the light engine to operate cooler for longer service life with consistent output. 20-gauge aluminum plaster frame has a fixed throat of 1 5/16" to accommodate double-thickness plasterboard.

Thru Wire Box Oversized junction box is 18-gauge

CSA listed for thru wiring (4 in and 4 out at 90°C) and has 7/8" and 1 1/8" knockouts.

Driver door provides access to driver and thru wire box through fixture aperture.

2) Wattage & CCT - Wattage options are 16W, 25W, 30W, 42W. Available in 2700K, 3000K, 3500K, or 4000K color temperatures. Initial color binning for LEDs is +72K / -170K @ 3500K and potential color shift over the life of the LEDs is +/- 75K @ 50,000 hours.

3) Dimming - Compatible 0-10V Dimmers
• Lutron DVTV

- Lutron NTFTV
- LEVITON IP710-DLZ
- Wattstopper/Legrand ADF-120277

4) Driver - The driver can be removed either through the aperture or back of thru wire box for replacement and ease of wire connection.

Standard Quick Disconnect for driver module allows driver to be removed completely from housing without tools. It offers quick connection to building power supply.

- 5) Mounting Rigid mounting brackets provide 3" vertical adjustment from inside aperture and plenum side of housing. Brackets accommodate 1½" C-Channel (mounting bars ordered as an optional accessory).
- 6) Reflectors Upper Reflector Reflector is spun anodized aluminum of high-specularity, vacuum metalized, designed to provide highest efficiency and effective beam distribution. The lens obscures direct view of the LEDs.

Lower Reflector - Compound parabolic curve of lower reflector provides optical and physical 45° and 55° cutoff. Aluminum spun anodized lower reflector is designed to provide iridescent-free finish. Solite lens included.

Lower Reflector Finishes -

Specular - highly polished post-anodized finish with dark light appearance. Precise light distribution and glare limitation provides highest lumen output.

Semi-Specular - architectural visual identity is provided while maintaining precise directionality of light.

Matte - soft diffuse evenly illuminated surface provides a congruous appearance between the downlight and the ceiling.

Ultra-Matte - extreme diffuse finish scatters light at high angles. Ideal for increased wallwash effect (with standard downlight reflector) for corridor or similar applications.

7) Life - 50,000 hours rated life. L70.

8) Weight - 6° STD $45^{\circ} = 9$ lbs.

 $6^{\circ\prime}$ EM $45^{\circ} = 16.90$ lbs. $6^{\circ\prime}$ STD $55^{\circ} = 8.75$ lbs.

 $6^{\circ\prime}$ EM 55° = 15 lbs.

NOTE: For non-dimming installations, simply cap off the two control wires and connect the hot/neutral and ground as normal.

WATTAGE/DRIVER AVAILAB	ILITY		
		D1/D2	DH1/DH2
BASYS LED	WATTAGE	STANDARD 0-1 OV DIMMING DRIVER	LUTRON HILUME A SERIES
		120V/277V	120V/277V
4" BASYS LED	8	Υ	Y
	16	Y	Y
	25	Υ	Y
6" BASYS LED	16	Y	Y
	25	Y	Y
	30	Y	Υ
	AD	v	N

ENERGY STAR LISTINGS

PRODUCT	WATTAGE	CCT	TRIM FINISH
4" BASYS LED Round Downlight	all	3500K	Clear Semi-Specular
6" BASYS LED Round Downlight	all	3500K	Clear Semi-Specular
4" BASYS LED Square Downlight	all	3500K	Clear Brushed
6" BASYS LED Square Downlight	all	3500K	Clear Brushed

List will be updated as more fixtures become Energy Star rated

Fixture Type B

Zumtobel Lighting, Inc. @2012 17-09 Zink Place, Unit 7 Fair Lawn, NJ 07410

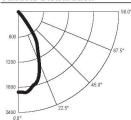
845-691-6262 zli.us@zumtobel.com

www.zumtobel.us

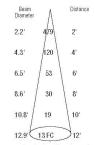
In a continuing effort to offer the best product possible we reserve the right to change, without notice, specifications or materials. Technical specification sheets that appear on www.zumtobel.us are the most recent version and supersede all other versions that exist in any other printed or electronic form.

D00060TS 02/29/12

Photometric Data


BR6DLED-25W-K35-MS45-CS

Efficacy = 61 lm/W


Luminance Data (cd/sq.m)

Angle In	Average	Average	Average
Degrees	0-Deg	45-Deg	90-Deg
45	5778	5778	5778
55	2082	2082	2082
65	1322	1322	1322
75	973	973	973
85	0	0	0

Candela Distribution

Vertical		Zonal		
Angle	0°	Lumens		
0°	1917			
5°	1931	169.8		
15°	1722	475.6		
25°	1136	526.6		
35°	577	345.3		
45°	75	66.4		
55°	22	20.2		
65°	10	10.3		
75°	5	4.6		
85°	0	0.0		
90°	0			

Beam center footcandles shown in "cone of light" are initial, LLF = 1.0

Coefficients Of Utilization - Zonal Cavity Method Effective Floor Cavity Reflectance 0.20

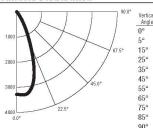
Effective Floor Cavity Reflectance 0.20

RC		80				70				50			30			10		0
RW	70	50	30	10	70	50	30	10	50	30	10	50	30	10	50	30	10	0
0	119	119	119	119	116	116	116	116	111	111	111	106	106	106	102	102	102	10
1	114	111	108	106	111	109	106	104	105	103	101	101	100	98	97	96	95	94
2	108	103	99	96	106	101	98	95	98	95	93	95	93	91	93	91	89	87
3	103	96	91	87	101	95	90	87	92	89	85	90	87	84	88	85	83	81
4	98	90	85	80	96	89	84	80	87	82	79	85	81	78	83	80	77	76
5	93	85	79	75	91	84	78	74	82	77	74	80	76	73	79	75	72	71
6	88	79	74	69	87	79	73	69	77	72	69	76	71	68	74	71	68	66
7	84	75	69	65	83	74	69	65	73	68	64	72	67	64	71	67	63	62
8	80	71	65	61	79	70	64	60	69	64	60	68	63	60	67	63	60	58
9	76	67	61	57	75	66	61	57	65	60	57	64	60	56	64	59	56	55
10	72	62	67	64	70	62	67	64	62	67	62	61	67	62	60	EG	62	62

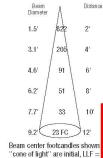
Zumtobel Lighting, Inc. ©2012 17-09 Zink Place, Unit 7 Fair Lawn, NJ 07410

D00060TS 02/29/12

845-691-6262 800-932-0633 zli.us@zumtobel.com


www.zumtobel.us

BR6DLED-25W-K35-MS55-CS


Efficacy = 70lm/W

Luminanc	e Data (cd/sq	.m)	
Angle In	Average	Average	Average
Degrees	0-Deg	45-Deg	90-Deg
45	2967	2967	2967
55	229	229	229
65	104	104	104
75	0	0	0
85	0	0	0

Candela Distribution

Vertical		Zonal				
Angle	0°	Lumens				
0°	3287					
5°	3315	292.0				
15°	2658	715.9				
25°	1068	497.0				
35°	240	165.2				
45°	38	34.4				
55°	2	3.8				
65°	1	0.7				
75°	0	0.1				
85°	0	0.0				
90°	0					

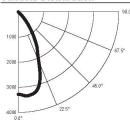
Fixture Type B

<u>Coefficients Of Utilization - Zonal Cavity Method</u> Effective Floor Cavity Reflectance 0.20

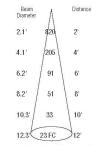
RC		80				70				50			30			10		0
RW	7.0	50	30	10	70	50	30	10	50	30	10	50	30	10	50	30	10	0
0	119	119	119	119	116	116	116	116	111	111	111	106	106	106	102	1021	102	100
1	114	112	110	108	112	110	108	106	106	104	103	102	101	100	99	98	97	95
2	110	106	102	99	108	104	101	98	101	98	96	98	96	94	95	93	92	90
3	105	100	96	92	103	98	95	91	96	93	90	94	91	89	91	89	87	86
4	101	95	90	86	99	94	89	86	92	88	85	90	86	84	88	85	83	82
5	97	90	85	81	96	89	85	81	87	83	80	86	82	80	84	81	79	78
6	93	86	81	77	92	85	80	77	84	79	76	82	79	76	81	78	75	74
7	90	82	77	73	88	81	76	73	80	76	73	79	75	72	78	74	72	71
8	86	78	73	70	85	78	73	70	77	72	69	76	72	69	75	71	69	68
9	83	75	70	67	82	74	70	66	74	69	66	73	69	66	72	68	66	65
10	80	72	67	64	79	71	67	64	71	66	63	70	66	63	69	66	63	62

In a continuing effort to offer the best product possible we reserve the right to change, without notice, specifications or materials. Technical specifications disease that appear on www.zumbbet.us are the most recent version and supersede all other versions that exist in any other printed or electronic form.

Photometric Data


BR6DLED-42W-K35-MS55-CS

Efficacy = 69lm/W


Luminance Data (cd/sq.m)

Angle In	Average	Average	Average
Degrees	0-Deg	45-Deg	90-Deg
45	14949	15956	14949
55	477	477	477
65	130	130	130
75	0	0	0
85	0	0	0

Candela Distribution

	Ho	rizontal Ang	jle	
Vertical Angle	0°	45°	90°	Zonal Lumens
0°	3280	3280	3280	
5°	3355	3364	3355	301.0
15°	3106	3127	3106	848.1
25°	1830	1891	1830	866.7
35°	875	928	875	567.9
45°	193	206	193	171.5
55°	5	5	5	10.5
65°	1	1	1	1.4
75°	0	0	0	0.1
85°	0	0	0	0.0
90°	0	0	0	

Beam center footcandles shown in "cone of light" are initial, LLF = 1.0

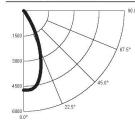
Coefficients Of Utilization - Zonal Cavity Method Effective Floor Cavity Reflectance 0.20

RC		80				70				50			30			10		0
RW	70	50	30	10	70	50	30	10	50	30	10	50	30	10	50	30	10	0
0	119	119	119	119	116	116	116	116	111	111	111	106	106	106	102	102	102	10
1	114	111	109	106	111	109	107	105	105	103	102	101	100	98	98	97	96	94
2	108	104	100	96	106	102	98	95	99	96	93	96	93	91	93	91	89	88
3	103	97	92	88	101	95	91	87	93	89	86	90	87	85	88	86	83	82
4	98	91	85	81	96	90	85	81	87	83	80	85	82	79	84	80	78	76
5	93	85	79	75	92	84	79	75	82	78	74	81	77	74	79	76	73	71
6	89	80	74	70	87	79	74	70	78	73	69	76	72	69	75	71	68	67
7	84	75	70	65	83	75	69	65	73	68	65	72	68	65	71	67	64	63
8	80	71	65	61	79	71	65	61	69	64	61	68	64	61	68	63	60	59

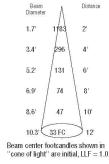
Zumtobel Lighting, Inc. @2012 Fair Lawn, NJ 07410

D00060TS 02/29/12

845-691-6262 zli.us@zumtobel.com


www.zumtobel.us

BR6DLED-42W-K35-NS45-CL


Efficacy = 69lm/W

Luminanc	e Data (cd/sq	.m)	
Angle In	Average	Average	Average
Degrees	0-Deg	45-Deg	90-Deg
45	11425	11425	11425
55	1509	1509	1509
65	894	894	894
75	614	614	614
85	440	440	440

Candela Distribution

Horizontal Angle										
Vertical Angle	0°	Zonal Lumens								
0°	4730									
5°	4716	414.3								
15°	3840	1052.								
25°	2045	918.1								
35°	397	300.8								
45°	148	92.2								
55°	16	14.8								
65°	7	7.0								
75°	3	3.1								
85°	1	0.6								
90°	0									

Fixture Type B

Coefficients Of Utilization - Zonal Cavity Method

Effective Floor Cavity Reflectance 0.20

RC		80				70				50			30			10		0
RW	70	50	30	10	70	50	30	10	50	30	10	50	30	10	50	30	10	0
0	119	119	119	119	116	116	116	116	111	111	111	106	106	106	102	102	102	100
1	114	112	109	107	112	109	107	106	105	104	102	102	100	99	98	97	96	95
2	109	105	101	98	107	103	100	97	100	97	95	97	95	93	94	92	91	89
3	104	99	94	91	103	97	93	90	95	91	89	92	90	87	90	88	86	84
4	100	93	88	85	98	92	88	84	90	86	83	88	85	82	86	84	81	80
5	96	88	83	79	94	87	83	79	86	81	78	84	80	78	83	79	77	76
6	92	84	78	75	90	83	78	74	82	77	74	80	76	73	79	76	73	72
7	88	80	74	71	87	79	74	70	78	73	70	77	73	70	76	72	69	68
8	84	76	71	67	83	75	70	67	74	70	66	73	69	66	72	69	66	65
9	81	72	67	64	80	72	67	63	71	66	63	70	66	63	69	66	63	62
10	78	69	64	61	77	69	64	60	68	63	60	67	63	60	67	63	60	59

In a continuing effort to offer the best product possible we reserve the right to change, without notice, specifications or materials. Technical specification sheets that appear on www.zumtobel.us are the most recent version and supersede all other versions that exist in any other printed or electronic form.

The fascination of reflected light

Projec br – walkmour betversitn

Contemporary architecture calls out for modern lighting systems that can meet both aesthetic and functional requirements. Open, lofty interiors place particularly high demands on form and function. Projector-mirror technology offers the optimum solution to this lighting challenge.

We can send light into places that are difficult for us to access, in order to distribute this light evenly back into the room. Fascination, functionality and efficiency were the themes of our Miros development. Equally important to us were clear lines, universal adjustability and high system quality.

The reflector unit has a very tat design and can be supplied in various sizes depending on the task. The circular or square design of the mirror means it is easy to fit in any ceiling construction. Unwanted glare is prevented by the multi-spherical surface structure of the mirror.

The multifunctional housing enables straightforward mounting even in awkward positions.

Fixture Type H

IROS DESIGN CHARLES KELLER

"The spatial separation of light source and reflecting surface opens up new lighting dimensions for architectures. High ceilinged rooms and large spaces can have focussed lighting – simply fascinating." Charles Keller, Designer of the MIROS projector-mirror "satelighting" system.

The projector Technology and perfection

Concentration of the light

The high technical quality of the projector makes it an impressive light source, as does the attractive, minimalist design with its functional outlines. The light from the projector is highly concentrated, minimising scattering losses when reflected from the mirror.

Perfect focussing and low beam divergence are guaranteed by an exact computer-designed reflector structure. The diroular louvres and integrated lamp shielding element prevent glare from the extremely bright light

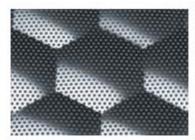
The ballast housing and reflector unit are designed to IP 54 protection, and can therefore also be used outdoors as well.

Fixture Type H

MIROS AESTHETICS & PERFECTION

9

Highly specular surface


Exclusively directional reflection of light.

Outside the light cone, the reflector appears "dark".

Semi-matt surface

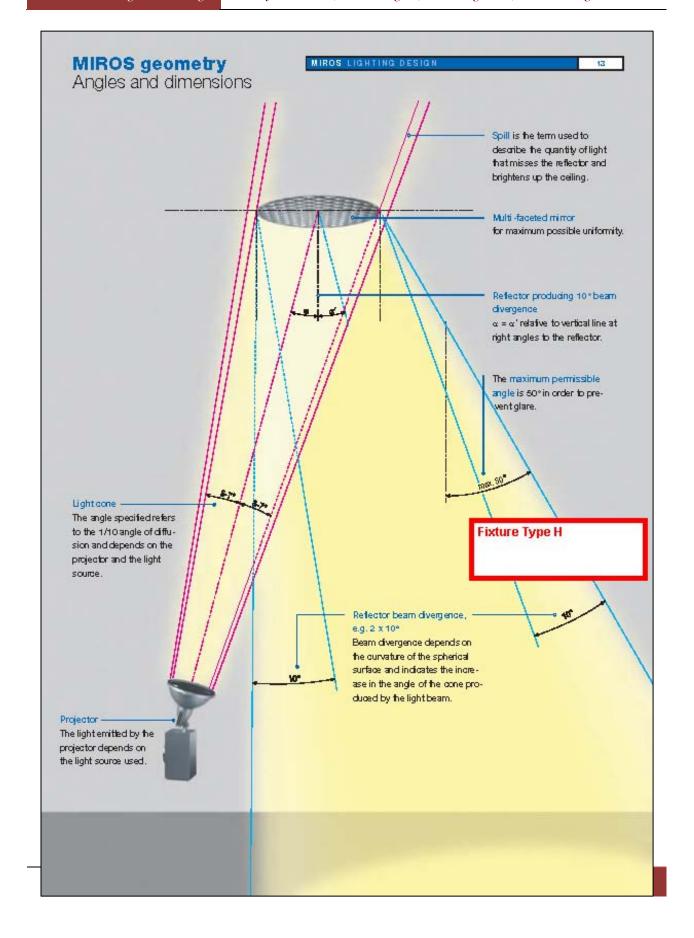
Slightly diffuse component of reflected light for soft transitions. Luminance levels are perceptible on the reflector even with oblique light incidence.

Perforated sheet steel optic

Same properties as for semi-mattiversion but with 20 % transmission component. Light for brightening up the ceiling and throwing soft shadows behind the reflector.

The reflectors are practically maintenance-free, and can be fixed onto any standard supporfing surface because of their low intrinsic weight.

The mounting plate is made of die-cast aluminium in RAL 6006, with two fixing points, and three-point support. Comes with a screw in suspension tube of various lengths to suit the reflector diameter.

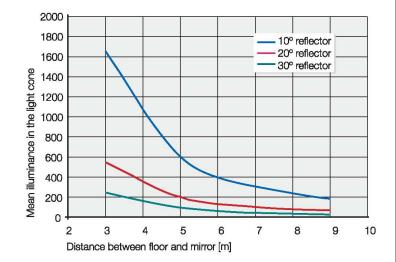


Adjustment

The reflectors are easy to align and secure. The reflector angle is adjusted via a ball-and-socket joint integrated into the suspension tube, and can be fixed with a screw. The risk of the reflector shifting out of alignment is minimal, even during dearing.

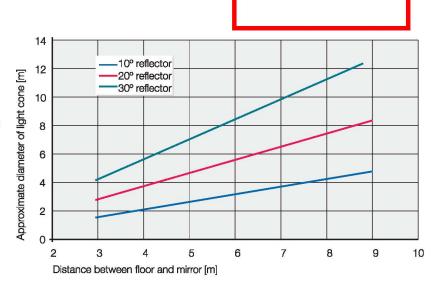
Fixture Type H

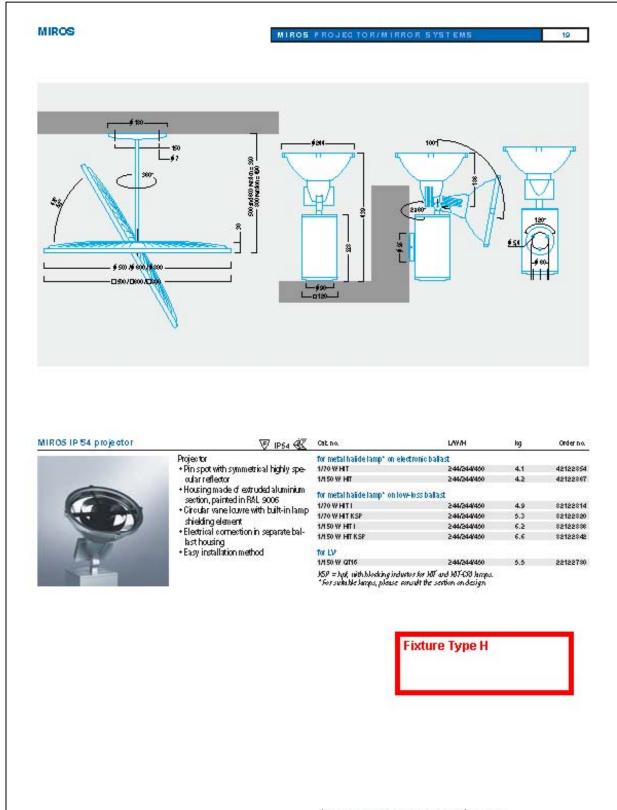
MIROS lighting design Distance between projector and surface to be illuminated


Sizing an installation

MIROS LIGHTING DESIGN

16

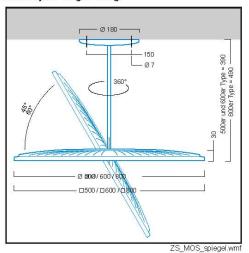

This diagram can be used to roughly estimate the mean illuminance levels in the light cone of the reflector depending on the distance to the mirror surface. These levels can be determined for three different types of multi-faceted mirror (beam divergence of cone: 2 x 10°, 2 x 20°, 2 x 30°). The following assumptions are made for the sake of simplification:


- Light loss factor 0.8 (ageing, dirt)
- No allowance made for light cone distortion
- Assumed spill by projector 30 %
- Projector model 150 W CDM SA/T
- Highly specular mirror

Fixture Type H

The diagram on the right shows the approximate diameter of the light cone as a function of the beam divergence of the mirror and the distance between the mirror and the floor. This is based on a projector with a 1/10 angle of diffusion of 5–7°.

MIROS multi-faceted mirror


SQC 800 2x30° 22122689

square mirror matt bivergent

Square mirror matt bivergent; multi-faceted deflecting mirror multi-faceted surface, matt made of one piece; light spot dispersion for optimised glare removal; mounted on stable plastic plate in RAL 7000 grey; 1-point adjustment using ball-and-socket joint in mirror; rotates through 360° rotation and tilts through 45/60°; light distribution depends on beam angle; mounting plate with 2-point fixing for installation on ceilings of any type; dimensions: Ø 806 mm, height 505 mm, extremely low weight: 4.4 kg.

ZS_MOS_F_Spiegel_matt.jpg

Fixture Type H

LINEAR WALL GRAZER

Blocking (by others)

LED

APPLICATIONS:

Wall grazing for commercial, retail and hospitality spaces

CONSTRUCTION:

Extrude d aluminum housing
Die-formed aluminum, galvanized and coldrolled steel

internal components
Die-formed aluminum module bracket

Stamped steel end cap painted black Housing lengths are 4' or 8' nominal for individual fixtures

MOUNTING:

Sheet rock ceilings

Fixtures may be continuously row-mounted

OPTICS:

Extruded aluminum optic-custom polished finish 4 LED linear array modules per nominal 4' section, 2700°K. 85 CRI

ELECTRICAL:

Electronic constant voltage 24v DC LED driver, 120v

Dimming: 0-10v dimming equipment and relay module by others, consult factory

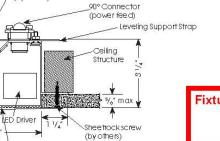
This product compiles with IEEC6241 for surge endur-ance up to 1KV. America recommends using additional surge protection with this unit (supplied by others), surge damage is not covered by warranty.

LABELING:

Threaded Rod Support (by others)

Feather spackle into ceiling

Finish Wall



PROJECT:

TYPE

ELECTRICAL

Wall Structure

Wall Bracket to

be attached to structure and blocking as

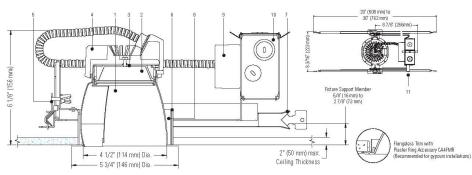
shown

		Lu	inping 2	4'	Ι ε	30	
Driver	Wattage per foot		Input watts	Amps	Input watts	Amps	
Electronic	8	120v 277v	37 37	.31 .13	74 74	.62 .26	

ORDERING INFORMATION:

Mo del	Wattage per foot	Lamp Type	Driver	Finish	Length	Length	Voltage	ColorTemp	Options/ Accessories
LWG	8	LED	E - electronic	PAL - polished aluminum	4 - 4' individual 8 - 8' individual run length in increments of 1' (consult factory)	IND - individual BOR - beginning of run EOR - end of run MOR - middle of run	120 277	2700 Consult factory for other color temperature options	DIM - dimming

Example: LWG-8-LED-E-PAL-4-IND-120-2700


Cat#

23 daniel road, east, fairfield, nj 07044 • P: 973-882-5010 F: 973-882-2605 • www.amerlux.com

C4L10WW

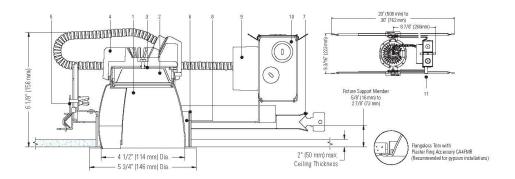
Calculite LED 4 1/2" Wall Washer

Page 1 of 4

Ordering Guide: Light Engines

Light Engine Series	Style	Color Temperature	Reflector Finish	Flange	Options
C4L10	WW (Open wall wash)	27K (2700K) 30K (3000K) 35K (3500K) 40K (4000K)	CL (Clear) CCL (Comfort Clear) CCD (Comfort Clear Diffuse) CCZ (Champagne Bronze) WH (Painted White)	W (Painted white) P (Aperture- matching/polished) FT (Flush-mount/ flangeless) ¹	EM (Integral emergency test switch)

Example: C4L10LW35KCCLWEM | 1Accessory CA4FMR recommended for gypsum applications. Reflector flange is 1/4".


Ordering Guide: Frame-in Kits

Frame-in Kit Series	Installation Options	Input Voltage	Options
C4L10	N (New construction) R (Remodeler)	1 (120V) 2 (277V)*	Blank (Electronic low voltage dimming) EM (Emergency) LD (Lutron driver) Z10V (0-10V dimming)
CUL10	J (J-box mount retrofit) S (Screw-in base retrofit (120V only)	1 (120V)	Blank (Electronic low voltage dimming)
Example: C4L10N1EM *277V dimming applications re	equire LD or Z10V option.	Job Inform Job Name: Cat. No.: Notes:	Fixture Type J

C4L10W

Calculite LED 4 1/2" Wall Washer

Features

Aperture: 4 1/2" (114mm) I.D., 5 3/4" (146mm) O.D.

Input Wattage: 20W (+/- 5%)

Reflector Cone: Aluminum. Provides 50° cutoff to

source & source image. Self-flanged.

Depth (including Frame-in kit): 6 1/8" (156mm)

Power Connection: Attaches to frame-in kit via push-in connector (on frame). Removable cover provides access.

Technology

LED Board: Array of high brightness royal blue LED's.

Remote Phosphor Technology: Remote phosphor technology provides increased efficiency and color consistency. Phosphor lens assembly positioned in front of LED array converts blue light to white. Color shift will not exceed +/- 100K over life.

Optical Mixing Chamber: Lightolier-specific mixing chamber redirects back-reflected light through aperture resulting in 20% increase in efficiency. Thermal Management: Heat sink and thermal design along with clean room assembly ensures specified performance.

Technology (continued)

Rated Life: Based on IESNA LM-80-2008 50,000 hours at 70% lumen maintenance.

Photometric Performance: Tested in accordance to IESNA LM-79-2008

Options

Dimming Capability: See LED-DIM specification sheet

Emergency Capability (Integral): Add "EM" suffix.

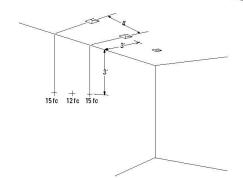
See LED-EM spec sheet.

Emergency Capability (Inverter): See LED-LMI specification sheet

Labels

UL (suitable for wet locations) cUL LR FW

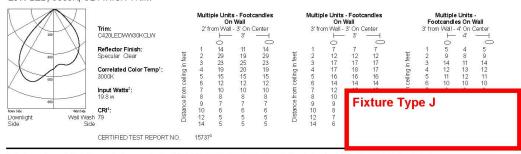
5 Year Wa


Fixture Type J

Job Information Type:

C4L10WW

Calculite LED 4 1/2" Wall Washer



Lighting Data - Example
C420LEDWW30KCLW illumination on the wall
4" down from the ceiling is 12 f.c.
beneath and 13 f.c. between fixtures,

20W LED, 2700K, CL FINISH TRIM

	M				Or	s - Footo Wall				le Units On	Wall			Foo	Multiple	es On V	Vall
200	$\prec \land \land$	Trim: C420LEDWW27KCLW		2' fr	om Wall	I - 3' On (- 3'	Center ——		3' from Wall - 3' On Center 3' —					3' fron	n Wall - ⊢	4' On C	Center ——
1 // 400		Reflector Finish:	*	1	0	9	14	#	1	0	6	0	*	1	0 5	4	0
		Specular Clear	in feet	3	26 19	17 22	26 19	in feet	3	11 15	10 14	11 15	in feet	3	12	9	12
\(\sim_{800} \)		Correlated Color Temp ¹ : 2700K	ceiling	5	16 13 10	16 13 10	16 13 10	eiling	4 5 6	14 13 11	15 13 11	14 13 11	œilling	4 5 6	10 9 8	11 10 8	10 9 8
800		Input Watts ² : 19.8 w	mout ec	7 8 9	8 7 6	8 7 6	8 7 6	De from	7 8 9	10 9 8	10 9 8	10 9 8	ce from	7 8 9	7 6 5	7 6 5	7 6 5
Downlight	Wall Wash	CRI4: 80	Distan	10 12	6	6 5	6	Distance 1	10 12	7 6	7 6	7 6	Distance	10 12	5 4	5 4	5
Side	Side		_	14	4	4	4		14	5	5	5		14	3	3	3
		CERTIFIED TEST REPORT I	١٥.	F0993	7^{3}												

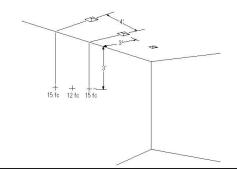
20W LED, 3000K, CL FINISH TRIM

¹Color temperature controlled within specifications as defined by ANSI_NEMA_ANSLG C78.377-2008. Specifications for the Chromaticity of Solid State Lighting Products.

¹Netatego controlled to within 65%.

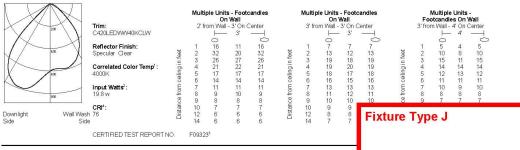
²Tested using absolute photometry as specified in LM79; IESNA Approved Method for the Electrical and Photometric Measurements of Solid-State Lighting Products.

*Color Rendering Index within #1-2%.


Job Information Type:

C4L10VVV

Calculite LED 4 1/2" Wall Washer


Page 4 of 4

20W LED, 3500K, CL FINISH TRIM

200		rim:	Multiple Units - Footcandles Multiple Units - Footcandles On Wall On Wall 2 from Wall - 3' On Center 3' from Wall - 3' On Center								Multiple Units - Footcandles On Wall 3' from Wall - 4' On Center						
	/ /	C420LEDWW35KCLW				- 3'	10			_	3'	10				- 4"	10
400		Reflector Finish: Specular Clear	8	1 2	17 32	11 20	17 32	**	1 2	8 13	7	8 13	₩.	1	6	5 8	6 11
600		Correlated Color Temp¹: 500K	seiling in feet	3 4 5	23 20 16	27 20 16	23 20 16	ceiling in feet	3 4 5	19 18 17	18 19 16	19 18 17	seiling in 1	3 4 5	15 13 11	11 14 12	15 13 11
800		nput Watts²: 9.8 w	e from o	7 8	13 10 9	13 10 9	13 10 9	from	7 8	14 12 10	14 12 10	14 12 10	e from o	7 8 9	10 9 7	10 9 8	10 9 7
Downlight \\ Side	Vall Wash 7	CRI ⁴ :	Distano	10 12 14	7 6	7 6	7 6	Distance	10 12 14	8 7 6	8 7	8 7	Distanc	10 12 14	6 5	6 5	6 5
Side		CERTIFIED TEST REPORT N	0.	F0995	4 ³	,			100			8		1.0	7	702	7

20W LED, 4000K, CL FINISH TRIM

Lighting Data - Example
C420LEDWW30KCLW illumination on the wall
4' down from the ceiling is 12 f.c.
beneath and 13 f.c. between fixtures.

Philips Lightolier

e: lol.webmaster@philips.com

t: (508) 679-8131

w: www.lightolier.com

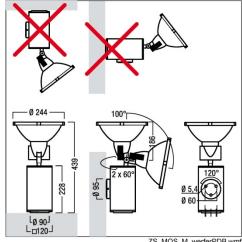
C4L10WW December 6, 2011

Specifications are subject to change without notice Koninklijke Philips Electronics N.V., 2011. All rights reserved.

Job Information Type:

Color temperature controlled within specifications as defined by ANSI_NEMA_ANSLG C78.377-2008: Specifications for the Chromaticity of ***
Nextage controlled to within 65%
Poktage controlled to within 65%
**The products of the Chromatic State Lighting Products of the Electrical and Photometric Measurements of Solid-State Lighting Products of **Color Rendering Index within #-1.2%*
**Color Rendering Index within #-1.2%*
**The Products of **The Products

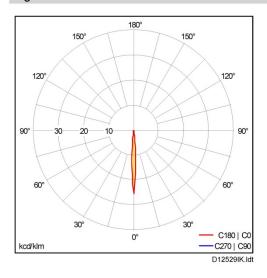
MIROS projector


MIROS 1/150W HIT G12 EVG IP54

42122867

projector

Projector 1 x 150W, for HIT-CE, with high frequency ballast. Housing made of aluminium extrusion and diecast aluminium in silver RAL 9006 stove-enamelled. With highly specular anodised parallelising reflector. Circular vane louvre with integral lamp shielding element for precise glare removal, with ceramic glass cover. Two installation variants for individual mounting using mounting ring. Electrical connection in separate compartment, reliable mechanism for positioning on 2 axes. Luminaire wired with halogen-free leads. Dimensions: 244 x 244 x 450 mm; weight: 4.19 kg.



ZS_MOS_M_werferPDB.wmf

Light Distribution

STD - standard

- Light Distribution: STD standard
 Lamps: 1 x HIT-CE / 150W
 Total luminous flux: 14000 lm

- Luminaire efficacy: 46 lm/W • Colour Rendering Index min.: 80
- · Ballast: EVG Tridonic PCI
- Connected Load: 163 W Lambda = 0.97

Fixture Type H

Zumtobel cannot issue a general approval certificate for chemical resistance. Zumtobel can supply written confirmation on request

Quality Lighting

1611 Clovis R. Barker Road San Marcos, Texas 78666 Toll Free Phone (800) 545-1326 FAX (866) 713-6002 www.qualitylighting.com

UF2 LED

Security

Accent

Facade

Recreational Fields

Sign Lighting

Landscape Lighting

Specifications

CONSTRUCTION Precision die-cast aluminum construction body. Cast aluminum lens frame with heat sink, Lens screws are specially designed captive stainless steel screws. Extruded silicone gasket. Available with vandal shield, wire

guard and visor. Tempered glass lens.

OPTICS 30 high-output LEDS available in 4K color temperature. 30 individual precision optics collect and redirect light to optimize performance. Optical system individually controls the placement of light in the target area.

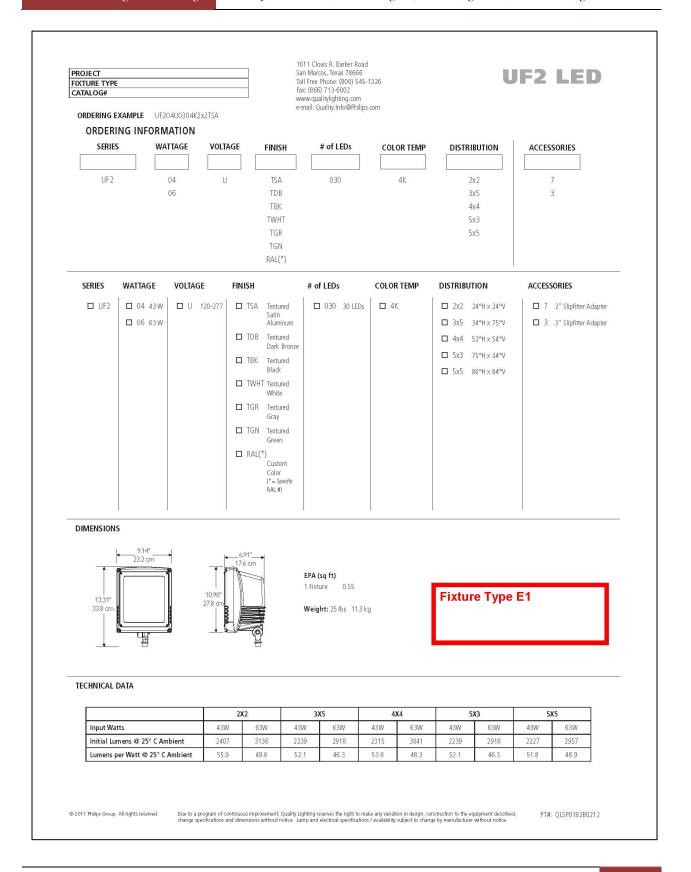
ELECTRICAL Electronic LED driver accepts 120-277 V, 50/60 Hz input. Furnished with 10 kV surge protector standard.

MOUNTING 3/4" arm with serrated teeth lock arm mount unit into position. The UF Series can be angled for indirect/

accent lighting. Unit can be aimed above or below horizontal.

FINISH Polyester powder coat, electrostatically applied, which is preceded by a five step pre-treatment process

including an iron phosphate priming stage for superior coating adhesion. This process meets or exceeds all


ASTM testing requirements, including those for 1,000 hour salt spray endurance testing.

LISTINGS UL/cUL 1598 listed, suitable for wet locations.

WARRANTY Mechanical, finish and electrical shall be covered by a limited 5-year warranty. See terms and conditions for details.

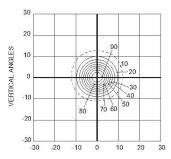
Fixture Type E1

Quality Lighting is a Philips group brand

PROJECT
FIXTURE TYPE
CATALOG#

1611 Clovis R. Barker Road San Marcos, Texas 78666 Toll Free Phone: (800) 545-1326 Fax: (866) 713-6002 www.qualitylighting.com e-mail: Quality.Info@Philips.com

UF2 LED


PHOTOMETRIC DATA

Luminaire: UF2 LED 2x2 Distribution

Lamp: 30 White LEDs with Clear Prismatic Plastic Optics

Beam Spread: 12.7 Deg Horiz (at 50% Max CD) 12.2 Deg Vert Field Spread: 24.1 Deg Horiz (at 10% Max CD) 23.6 Deg Vert

Beam Lumens: 1028 Field Lumens: 1847 Total Lumens: 2407

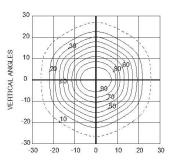

HORIZONTAL ANGLES

2239

Luminaire: UF2 LED 5x3 Distribution
Lamp: 30 White LEDs with Clear Prismatic Plastic Optics
Beam Spread: 44.8 Deg Horiz

| 46.5 Deg Vert | 16.5 Deg Ver

Total Lumens:

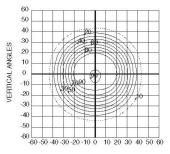

HORIZONTAL ANGLES

Luminaire: UF2 LED 4x4 Distribution

Lamp: 30 White LEDs with Clear Prismatic Plastic Optics

Beam Spread: 30.4 Deg Horiz (at 50% Max CD) 31.0 Deg Vert Field Spread: 51.7 Deg Horiz (at 10% Max CD) 53.7 Deg Vert Beam Lumens: 1213

Beam Lumens: 1213 Field Lumens: 1970 Total Lumens: 2315


HORIZONTAL ANGLES

Luminaire: UF2 LED 5x5 Distribution

Lamp: 30 White LEDs with Clear Prismatic Plastic Optics Beam Spread: 59.9 Deg Horiz

Beam Spread: 59.9 Deg Horiz (at 50% Max CD) 54.9 Deg Vert Field Spread: 85.9 Deg Horiz (at 10% Max CD) 84.0 Deg Vert Beam Lumens: 1575 Field Lumens: 2079

Beam Lumens: 1575 Field Lumens: 2079 Total Lumens: 2227

HORIZONTAL ANGLES

Fixture Type E1

© 2011 Philips Group. All rights reserved

Due to a program of continuous improvement, Quality Lighting reserves the right to make any variation in design, construction to the equipment described, change specifications and dimensions without notice. Lamp and electrical specifications / availability subject to change by manufacturer without notice.

PT#: QLSP0182B0212